基本函数求导公式
基本函数求导公式:
基本导数公式有:(lnx)’=1/x、(sinx)’=cosx、(cosx)'=-sinxo
公式:y=c(c为常数)y'=0、y=xny'=nx^(n-l)。
导数的基本公式:y=c(c为常数)y'=0、y=x^ny'=nx^(n-1)。
导数Derivative也叫导函数值,又名微商。对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找字已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
求导法则:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
关于基本函数求导公式如下:
1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]
即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数
2、f(x)=a的导数,f'(x)=0,a为常数
即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数
即系数为1的单项式的导数,以指数为系数,指数减1为指数,这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数,f'(x)=ax^(a-1),a为实数
即幂函数的导数,以指数为系数,指数减1为指数。
5、f(x)=a^x的导数,f'(x)=a^xlna,a>0且a不等于1
即指数函数的导数等于原函数与底数的自然对数的积。
6、f(x)=e^x的导数,f'(x)=e^x
即以e为底数的指数函数的导数等于原函数
7、f(x)=log_ax的导数,f'(x)=1/(xlna),a>0且a不等于1
即对数函数的导数等于1/x与底数的自然对数的倒数的积
8、f(x)=lnx的导数,f'(x)=1/x
即自然对数函数的导数等于1/x
9、(sinx)'=cosx
即正弦的导数是余弦
10、(cosx)'=-sinx
即余弦的导数是正弦的相反数
求导公式
c'=0(c为常数)
(a'x)'=a'xlna
(logax)’=1/(xlna),a>0且 a≠1
(lnx)’=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)2
(secx)=secxtanx
(cotx)'=-(cscx)2
(cscx)=-csxcotx
导数的基本公式:y=c(c为常数) y'=0、y=x^n y'=nx^(n-1) 。
导数Derivative也叫导函数值,又名微商。对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
求导法则:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。