数学手抄报分数的意义和性质
数学手抄报分数的意义和性质如下:
1、意义:一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
2、性质
(1)分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
(2)一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。
(3)当分子与分母同时乘以或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。
分数原是指整体的一部分,或更一般地,任何数量相等的部分。表现形式为一个整数a和一个整数b的比(a为b倍数的假分数是否属于分数存在争议)。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。当分母为100的特殊情况时,可以写成百分数的形式,如1%。
最简分数化小数是先看分母的素因数有哪些,如果只有2和5,那么就能化成有限小数,如果不是,就不能化成有限小数。不是最简分数的一定要约分方可判断。
分数注意事项:
1、分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。
2、分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。
3、一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。