三角函数化简公式及方法

 我来答
新科技17
2022-07-01 · TA获得超过5922个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:76.2万
展开全部

三角函数化简就是对复杂的三角函数进行变形,从而变成简单的三角函数,接下来给大家分享三角函数化简常用的公式。

三角函数化简原则

(1)看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建求特角;

(2)看函数名的特点,向同名函数转化,弦切互相转化;

(3)看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。另外,根据式子的特点,还可以使用辅助角公式。

三角函数化简常用公式

半角公式

sin(A/2)=±√((1-cosA)/2)

cos(A/2)=±√((1+cosA)/2)

tan(A/2)=±√((1-cosA)/((1+cosA))

三角函数和差化积公式

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]

sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]

cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]

cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函数积化和差公式

sinAsinB=-[cos(A+B)-cos(A-B)]/2

cosAcosB=[cos(A+B)+cos(A-B)]/2

sinAcosB=[sin(A+B)+sin(A-B)]/2

cosAsinB=[sin(A+B)-sin(A-B)]/2

三角函数降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

三角函数辅助角公式

asinα+bcosα=(√a^2+b^2)sin(α+β),tanβ=b/a

三角函数化简方法

(1)切割化弦;

(2)降幂公式;

(3)用三角公式转化出特殊角;

(4)异角化同角;

(5)异名化同名;

(6)高次转低次;

(7)辅助角公式;

(8)分解因式。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式