勾股定理的最简单的证明方法是什么?

想法... 想法 展开
 我来答
ATM半夏荧光
高粉答主

2019-05-13 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:883
采纳率:100%
帮助的人:22.2万
展开全部

简单的勾股定理的证明方法如下:

拓展资料:

勾股定理的使用方法:

1、确保三角形是直角三角形。 勾股定理只适用于直角三角形中,所以,在应用定理之前,你需要先确定三角形是否是直角三角形,这一点非常重要。幸好,区分直接三角形和别的三角形的方法只有一个,那就是看一个三角形中是否有一个90度的角。

2、确定变量a,b,c对应的三角形的边。在勾股定理中,a,b表示直角三角形的两条直角边,而c用来表示斜边,即直角对应的那条最长的边。所以,先给两条直角边分别标注上a,b(具体的对应关系没有要求),而斜边标注上c。

3、确定你所要求的边。使用勾股定理可以求出直角三角形的任意一条边的长度,但前提是知道另外两条边的长度。先确定哪一条边的长度是未知的——a,b或者c。

4、代入。将两条已知边的长度带入到公式a2 + b2 = c2中,其中a和b对应的是两直角边的长度,而c代表斜边长度。在上面的例子中,我们知道一条直角边和斜边的长度(3和5),然后将3和5代入到公式中,有32 + b2 = 2。

5、计算平方。首先,计算两条已知边长度的平方值。或者,你也可以先不计算出来,然后保留平方,带到式子中直接计算平方和。在上述例子中,3和5的平方分别是9和25,所以方程可以改写为9 + b2 = 25。

6、将未知变量移到等号一边。如果有必要的话,运用基本的代数操作,将未知变量移动到等号一侧,而将已知变量移动到等号的另一侧。如果你要求的是斜边长,那么就不需要再移动变量了。在上述例子中,方程式是9 + b2 = 25。两边同时减去9,等式变为b2= 16。

7、求开方。现在等式两边一边是数字,另一边是变量,然后同时求两边的平方根。在上述例子中b2 = 16,两边同时求平方根,有b = 4。因此,未知边的长度就是4。

参考资料来源:百度百科-勾股定理

一雷
推荐于2018-02-19 · TA获得超过2856个赞
知道答主
回答量:52
采纳率:0%
帮助的人:0
展开全部
勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a^2+b^2=c^2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法:直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA’ ≌△AA'C 。

过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等;

⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)2

= (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED

= ab+ ba+ c2

= (2ab+c2)。 ②

比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ? BA, ①

由△CAD∽△BAC可得AC2=AD ? AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
v型12138
2020-02-03
知道答主
回答量:19
采纳率:0%
帮助的人:1.5万
展开全部
勾股定理魏德武证法简明易懂,让人一目了然。用四块全等直角三角板,将每块直角三角形的三边长分别用小写a、b、c来表示,然后依次拼成两块长方形面积(ab+ab=2ab),再将其拆开重新组合,通过形变转化成边长为c的正方形面积,根据两块长方形面积前后不变的原理,无需割补,也不用求证就可轻而易举地得到一个恒等式,即:2ab=c^2-(b-a)^2化简得c^2=a^2+b^2。这就是举世无双最简的勾股定理魏氏证法!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匡扶正义QQ
2020-01-13
知道答主
回答量:16
采纳率:0%
帮助的人:5437
展开全部
勾股定理魏德武证法到目前为止,可以说他的证法是所有勾股定理证法中最简捷、最实用的首选方法。用四块全等直角三角形边长分别为a、b、c,组成二块长方形面积(ab+ad=2ab),然后再根据前后面积不变的原理,将二块长方形面积通过形变,转化成一块正方形面积;这样既不要割补也不需求证,,就可轻而易举地导出直角三角形(2ab=c^2-(b-a)^2,化简后:c^2=a^2+b^2.)三条边的关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沃玉兰居月
2019-09-28 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:25%
帮助的人:830万
展开全部
设两直角边和斜边分别由向量a、b、c表示,且有c=a+b,
∵a*b=0
∴│c│^2=│a+b│^2=│a│^2+│b│^2+2a*b=│a│^2+│b│^2
向量的方法不是初步方法,但最简单!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式