沪科版八年级数学上册知识点
1个回答
展开全部
学习沪科版 八年级 数学要有侧重的重点记忆,针对性地练习,把每章所涉及到的知识点弄明白,能够举一反三。下面我给大家分享一些沪科版八年级数学上册的知识点,大家快来跟我一起欣赏吧。
沪科版八年级数学上册知识点(一)
平面内点的坐标特征
1、各象限内点P(a ,b)的坐标特征:
第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0
(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。)
2、坐标轴上点P(a ,b)的坐标特征:
x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0
(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。)
3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:
沪科版八年级数学上册知识点(二)
三角形的边角性质
1、三角形的三边关系:
三角形中任何两边的和大于第三边;任何两边的差小于第三边。
2、三角形的三角关系:
三角形内角和定理:三角形的三个内角的和等于180°。
三角形外角和定理:三角形的三个外角的和等于360°。
3、三角形的外角性质
(1)三角形的一个外角等于与它不相邻的两个内角的和;
(2)三角形的一个外角大于与它不相邻的任何一个内角。
沪科版八年级数学上册知识点(三)
一次函数
1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x(k≠0),此时y是x的正比例函数。
2、一次函数的图像与性质
3、确定一次函数图像与坐标轴的交点
(1)与x轴交点:
(2)与y轴交点:(0,b),求法:令x=0,求y。
4、确定一次函数解析式———待定系数法
确定一次函数解析式,只需x和y
(1)设函数关系式为:y=k x+b;
(2)代入x和y的两对对应值,得关于k、b的方程组;
(3)解方程组,求出k和b。
5、k和b的意义 (1)∣k∣决定直线的“平陡”。∣k∣越大,直线越陡(或越靠近y轴);∣k∣越小,直线越平(或越远离y轴);
(2)b表示在y轴上的截距。(截距与正负之分)
6、由一次函数图像确定k、b的符号 (1)直线上升,k>0;直线下降,k<0;
(2)直线与y轴正半轴相交,b>0;直线与y轴负半轴相交,b<0
7、两条直线的位置关系
直线l1:yk1xb1和直线l2:yk2xb2
沪科版八年级数学上册知识点(一)
平面内点的坐标特征
1、各象限内点P(a ,b)的坐标特征:
第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0
(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。)
2、坐标轴上点P(a ,b)的坐标特征:
x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0
(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。)
3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:
沪科版八年级数学上册知识点(二)
三角形的边角性质
1、三角形的三边关系:
三角形中任何两边的和大于第三边;任何两边的差小于第三边。
2、三角形的三角关系:
三角形内角和定理:三角形的三个内角的和等于180°。
三角形外角和定理:三角形的三个外角的和等于360°。
3、三角形的外角性质
(1)三角形的一个外角等于与它不相邻的两个内角的和;
(2)三角形的一个外角大于与它不相邻的任何一个内角。
沪科版八年级数学上册知识点(三)
一次函数
1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x(k≠0),此时y是x的正比例函数。
2、一次函数的图像与性质
3、确定一次函数图像与坐标轴的交点
(1)与x轴交点:
(2)与y轴交点:(0,b),求法:令x=0,求y。
4、确定一次函数解析式———待定系数法
确定一次函数解析式,只需x和y
(1)设函数关系式为:y=k x+b;
(2)代入x和y的两对对应值,得关于k、b的方程组;
(3)解方程组,求出k和b。
5、k和b的意义 (1)∣k∣决定直线的“平陡”。∣k∣越大,直线越陡(或越靠近y轴);∣k∣越小,直线越平(或越远离y轴);
(2)b表示在y轴上的截距。(截距与正负之分)
6、由一次函数图像确定k、b的符号 (1)直线上升,k>0;直线下降,k<0;
(2)直线与y轴正半轴相交,b>0;直线与y轴负半轴相交,b<0
7、两条直线的位置关系
直线l1:yk1xb1和直线l2:yk2xb2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |