大数据开发难不难学?

 我来答
千锋IT教育 2022-09-21
展开全部
不难学,学习大数据确实具有一定的门槛要求,因为大数据本身就是建立在数学、统计学、计算机、经济学、社会学等诸多学科之上的交叉型学科,对于不同的初学者来说,在学习大数据的时候,要根据自身的实际情况来选择切入点,不同的切入点也有不同的门槛要求。虽然学习大数据无所谓学历,但是,从企业招聘的角度来看,对于人才的学历限制一般是要求在大专以上的。在以后的就业中,有大专以上学历的同学会更有优势。再者,大专以上学历的同学,相对的学习能力也是更强一些的,经历了高考的洗礼。大家都已经形成了系统的学习方法,这对于学习大数据是非常…
在开罗跳民间舞的胭脂花

2021-12-10 · TA获得超过341个赞
知道小有建树答主
回答量:4537
采纳率:28%
帮助的人:135万
展开全部
大数据开发难不难学?
大数据开发,难点有以下4个阶段:
1、数据采集
数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个阶段,我们可以做一个大数据采集平台,依托自动爬虫(使用python或者nodejs制作爬虫软件),ETL工具、或者自定义的抽取转换引擎,从文件中、数据库中、网页中专项爬取数据,如果这一步通过自动化系统来做的话,可以很方便的管理所有的原始数据,并且从数据的开始对数据进行标签采集,可以规范开发人员的工作。并且目标数据源可以更方便的管理。
数据采集的难点在于多数据源,例如mysql、postgresql、sqlserver 、 mongodb 、sqllite。还有本地文件、excel统计文档、甚至是doc文件。如何将他们规整的、有方案的整理进我们的大数据流程中也是必不可缺的一环。
2、数据汇聚
数据的汇聚是大数据流程关键的一步,你可以在这里加上数据标准化,你也可以在这里做数据清洗,数据合并,还可以在这一步将数据存档,将确认可用的数据经过可监控的流程进行整理归类,这里产出的所有数据就是整个公司的数据资产了,到了一定的量就是一笔固定资产。
数据汇聚的难点在于如何标准化数据,例如表名标准化,表的标签分类,表的用途,数据的量,是否有数据增量?,数据是否可用? 需要在业务上下很大的功夫,必要时还要引入智能化处理,例如根据内容训练结果自动打标签,自动分配推荐表名、表字段名等。还有如何从原始数据中导入数据等。
3、数据转换和映射
经过数据汇聚的数据资产如何提供给具体的使用方使用?在这一步,主要就是考虑数据如何应用,如何将两个?三个?数据表转换成一张能够提供服务的数据。然后定期更新增量。
经过前面的那几步,在这一步难点并不太多了,如何转换数据与如何清洗数据、标准数据无二,将两个字段的值转换成一个字段,或者根据多个可用表统计出一张图表数据等等。
4、数据应用
数据的应用方式很多,有对外的、有对内的,如果拥有了前期的大量数据资产,通过restful API提供给用户?或者提供流式引擎 KAFKA 给应用消费? 或者直接组成专题数据,供自己的应用查询?这里对数据资产的要求比较高,所以前期的工作做好了,这里的自由度很高。
大数据开发的难点主要是监控,怎么样规划开发人员的工作?开发人员随随便便采集了一堆垃圾数据,并且直连数据库。 短期来看,这些问题比较小,可以矫正。 但是在资产的量不断增加的时候,这就是一颗定时炸弹,随时会引爆,然后引发一系列对数据资产的影响,例如数据混乱带来的就是数据资产的价值下降,客户信任度变低。
陕西新华电脑学校
2021-12-17 · 百度认证:陕西新华电脑软件培训学校官方账号
陕西新华电脑学校
陕西新华电脑软学校位于西咸新区秦汉新城兰池二路东段,隶属于新华教育集团,是经陕西省人力资源和社会保障厅批准成立的一所大型互联网教育学校,是陕西省专业的互联网人才培养基地,交通便利,学风醇厚
向TA提问
展开全部
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式