设f(x)在区间[-1,1]上有连续导数,证明至少存在ξ∈[-1,1],使2f'(ξ)=3∫1(-1)xf(x)dx
1个回答
展开全部
用两次中值定理,f(x)在[-1,0]上连续且在(-1,0)内有连续二阶导数,存在m∈(-1,0),使
f'(m)=f(0)-f(-1),
同理在(0,1)内存在n∈(0,1),使
f'(n)=f(1)-f(0),
在(m,n)内,f'(x),连续可导,所以存在一点ξ∈(m,n),使得
f"(ξ)=f'(n)-f'(m)=f(-1)+f(1)-2f(0)
所以证得至少存在一点ξ∈(-1,1),使得f"(ξ)=f(-1)+f(1)-2f(0)
追问
最后一步使用中值定理,不应当是
f"(ξ)=[f'(n)-f'(m)]/(n-m) 如何把 n-m 消掉或者证明(n-m)为1?
f'(m)=f(0)-f(-1),
同理在(0,1)内存在n∈(0,1),使
f'(n)=f(1)-f(0),
在(m,n)内,f'(x),连续可导,所以存在一点ξ∈(m,n),使得
f"(ξ)=f'(n)-f'(m)=f(-1)+f(1)-2f(0)
所以证得至少存在一点ξ∈(-1,1),使得f"(ξ)=f(-1)+f(1)-2f(0)
追问
最后一步使用中值定理,不应当是
f"(ξ)=[f'(n)-f'(m)]/(n-m) 如何把 n-m 消掉或者证明(n-m)为1?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询