斐波那契数列通项公式的证明 谁能用数学归纳法证明这个通项公式的?

 我来答
华源网络
2022-05-20 · TA获得超过5602个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
证明方法如下:验证我就不说了,假设对小或等于n的自然数k,a(k)={[(1+sqrt(5))/2]^k - [(1-sqrt(5))/2]^k }/sqrt(5)都成立,当n=k+1时,就有
a(k+1)=a(k)+a(k-1)
={[(1+sqrt(5))/2]^k - [(1-sqrt(5))/2]^k }/sqrt(5)+{[(1+sqrt(5))/2]^(k-1) - [(1-sqrt(5))/2]^(k-1 )}/sqrt(5)
={[(1+sqrt(5))/2]^(k-1)[(3+sqrt(5))/2] - [(1-sqrt(5))/2]^(k-1))[(3-sqrt(5))/2] }/sqrt(5)
={[(1+sqrt(5))/2]^(k-1)[(6+2sqrt(5))/4] - [(1-sqrt(5))/2]^(k-1))[(6-2sqrt(5))/4] }/sqrt(5)
={[(1+sqrt(5))/2]^(k-1)[(1+sqrt(5))/2] ^2 - [(1-sqrt(5))/2]^(k-1)[(1-sqrt(5))/2] ^2}/sqrt(5)
={[(1+sqrt(5))/2]^(k+1)- [(1-sqrt(5))/2]^(k+1)}/sqrt(5)
这就说明公式对n=k+1也成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式