已知函数f(x)=sin(wx+π/6)(w>0)的最小正周期为π
设a∈(0,π/2),β∈(π/2,π),f(a/2+π/6)=3/5,f(β/2+5π/12)=-12/13,求sin(a+β)的值...
设a∈(0,π/2),β∈(π/2,π),f(a/2+π/6)=3/5,f(β/2+5π/12)=-12/13,求sin(a+β)的值
展开
1个回答
展开全部
数理答疑团为您解答,希望对你有所帮助。
函数f(x)=sin(wx+π/6)(w>0)的最小正周期为π,则w=2
f(a/2+π/6)=3/5,即sin(a+π/3+π/6)=3/5,sin(a+π/2)=3/5,a∈(0,π/2),
则cosa=3/5,sina=4/5,
f(β/2+5π/12)= -12/13,即sin(β+5π/6+π/6)= -12/13,sin(β+π)= -12/13,β∈(π/2,π),
则sinβ= 12/13,cosβ= 5/13,
所以:sin(a+β)=sinacosβ+cosasinβ=56/65
祝你学习进步,更上一层楼! (*^__^*)
函数f(x)=sin(wx+π/6)(w>0)的最小正周期为π,则w=2
f(a/2+π/6)=3/5,即sin(a+π/3+π/6)=3/5,sin(a+π/2)=3/5,a∈(0,π/2),
则cosa=3/5,sina=4/5,
f(β/2+5π/12)= -12/13,即sin(β+5π/6+π/6)= -12/13,sin(β+π)= -12/13,β∈(π/2,π),
则sinβ= 12/13,cosβ= 5/13,
所以:sin(a+β)=sinacosβ+cosasinβ=56/65
祝你学习进步,更上一层楼! (*^__^*)
追问
谢谢哈。祝越来越帅
追答
不好意思,cosβ= -5/13,
所以:sin(a+β)=sinacosβ+cosasinβ=16/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询