高数微积分积分公式推导

求根号下(1+x2)的积分推导过程... 求根号下(1+x2)的积分推导过程 展开
杨小不
2010-03-31 · TA获得超过221个赞
知道小有建树答主
回答量:61
采纳率:0%
帮助的人:0
展开全部
这个是第二类换元积分;设:x=tant;dx=sec^2tdt
则 :∫sqrt(1+x^2)dx=∫sec^3tdt=∫sectd(tant)
=sect*tant-∫sect(sec^2t-1)dt
=sect*tant-∫sec^3tdt+∫sectdt
=sect*tant+ln|sect+tant|-∫sec^3tdt
∫sec^3tdt与等号左边是一样的,移项到左边,得2*∫sec^3tdt
将2除过来得:∫sec^3tdt=(1/2)*(sect*tant)+(1/2)*ln|sect+tant|+C
将t换回x,得:
∫sqrt(1+x^2)dx=(1/2)*x*sqrt(1+x^2)+(1/2)*ln|sqrt(1+x^2)+x|+C

有一个推导公式是:
∫sqrt(a^2+x^2)dx=(x/2)*sqrt(a^2+x^2)+(a^2/2)ln|sqrt(a^2+x^2)+x|+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式