拉格朗日乘子法

 我来答
机器1718
2022-06-24 · TA获得超过6843个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部

拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法。

上图中
与椭圆体相交平面上直线 如果高度上没有限制那么 就形成一个面,这个面与椭圆体相交可以表示为 ,我们就可以在这个曲线找到最小值。然后我们可以将这等高线投影到二维平面上来简化问题

在上图中,我们可以推断出其实最小(或最大值)就位于限制条件g(x,y)和方程f(x,y)等号线相切的位置。而且有共同切线的斜率,那么他们法线方向是 成比例 的。这个比例系数就是拉格朗日乘子

我们现在来简单推导一下,这里将 y 表示为对于 x 的函数,那么就有 y(x),然后分别带入下面两个方程就得到。

下面我么这个两个方程都对x 进行偏微分,通过链式法则我们就得到下面式子

因为我们知道他们斜率是成比例的,所有就可以得到这样结论,这就是拉格朗日乘子法,其中 就是乘子

我们就可以利用这个三个条件来求在有限制条件下方程极值问题

假设 ,在 的条件限制下有极值。
利用上面知识来求极值


然后他们带入到 得到


那么结果就是最小值和最大值分别是 5 和 -5

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式