数学题 谢谢了 给好评的
1个回答
展开全部
解 :
∠ACB=90°,BF‖AC
∠CBF=90=∠ACB
AC=BC
∠CAB=∠ABC=45=∠EBF
DE⊥AB
所以,三角形BEF是等腰三角形,BD=BF=CD
所以,三角形ACD与三角形CBF是全等三角形
∠CAD=∠BCF
∠CAD+∠ADC=90=∠BCF+∠ADC
所以,AD⊥CF
2)
过F点作AC的垂线交于G点
BF‖AC,∠ACB=90°
所以,CDDF是矩形
CG=BF=AC/2,FG⊥AC
CG=AG
所以,三角形ACF是等腰三角形
CF=AF
呵呵
∠ACB=90°,BF‖AC
∠CBF=90=∠ACB
AC=BC
∠CAB=∠ABC=45=∠EBF
DE⊥AB
所以,三角形BEF是等腰三角形,BD=BF=CD
所以,三角形ACD与三角形CBF是全等三角形
∠CAD=∠BCF
∠CAD+∠ADC=90=∠BCF+∠ADC
所以,AD⊥CF
2)
过F点作AC的垂线交于G点
BF‖AC,∠ACB=90°
所以,CDDF是矩形
CG=BF=AC/2,FG⊥AC
CG=AG
所以,三角形ACF是等腰三角形
CF=AF
呵呵
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询