数学归纳法证明ln(1/n+1)>1/n^2-1/n^3

 我来答
匿名用户
2013-11-22
展开全部
这题是2007的高考题(山东还是广东的忘了,应该是山东的),题目在题干中已给出一个函数:f(x)=x^2+aln(1+x),取不妨取a=-1,构造函数g(x)=x^3-x^2+ln(1+x)
则g'(x)=[x^3+(x-1)^2]/(1+x),当x>0时g'(x)>0恒成立,于是g(x)在(0,+∞)上单调递增,所以必有g(x)>g(0)=0
而1/n ∈(0,1],所以令x=1/n上式也成立,所以就有1/n^3-1/n^2+ln(1+1/n)>0
上式化简即得ln(1/n+1)>1/n^2-1/n^3
mike
2013-11-22 · 知道合伙人教育行家
mike
知道合伙人教育行家
采纳数:15109 获赞数:42259
担任多年高三教学工作。

向TA提问 私信TA
展开全部
对数式的分母是什么?
更多追问追答
追问
(1/n +1),不是1/(n+1)
追答
等下

貌似是导数证明的题目,你改的要求吧?
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式