拉姆齐定律
拉姆齐理论是以英国数学家和哲学家弗兰克·P·拉姆齐(Frank P. Ramsey)的名字命名的,是数学的一个分支,致力于研究必须出现阶数的条件。 拉姆齐理论中的问题通常会问一个形式的问题:“某种结构中必须有多少个元素才能保证特定的财产能够持有”。
拉姆齐理论的核心可以概括成:完全的无序是不可能的。从最初的拉姆齐定理到后来发展出的众多拉姆齐型定理都表明:一个集合只要元素数量达到某个临界值后,一定会出现我们预先定义好的某种性质或结构。
组合数学的拉姆齐(Ramsey)定理
在组合数学上,拉姆齐(Ramsey)定理,又称拉姆齐二染色定理,是要解决以下的问题:要找这样一个最小的数 n,使得 n 个人中必定有 k 个人相识或 k 个人互不相识。
这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。6 个人中至少存在3人相互认识或者相互不认识。
该定理等价于证明这6个顶点的完全图的边,用红、蓝二色任意着色,必然至少存在一个红色边三角形,或蓝色边三角形。
拉姆齐理论是以英国数学家和哲学家弗兰克·P·拉姆齐(Frank P. Ramsey)的名字命名的,是数学的一个分支,致力于研究必须出现阶数的条件。
拉姆齐理论中的问题通常会问一个形式的问题:“某种结构中必须有多少个元素才能保证特定的财产能够持有”。1930年弗兰克·普伦普顿·拉姆齐在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。
拉姆齐理论的例子
拉姆齐理论的一个典型结果是从一些数学结构开始,然后将其切成碎片。为了确保至少其中一部分具有给定的有趣属性,原始结构必须达到多大,这个想法可以定义为分区规则。
例如,考虑一个n阶的完整图。也就是说,有n个顶点,并且每个顶点通过一条边连接到其他每个顶点。3阶的完整图称为三角形。然后将每条边缘都涂成红色或蓝色。为了确保有蓝色三角形或红色三角形,事实证明n必须是6。