高数,极限证明,简单题,求大神

kent0607
高粉答主

2014-09-28 · 关注我不会让你失望
知道大有可为答主
回答量:6.2万
采纳率:77%
帮助的人:6901万
展开全部
  用定义证明极限实际上是格式的写法,依样画葫芦就是:
  证 限 |x-2|<1,则有 |x+2|=|x-2+4|>4-|x-2|>4-1=3。
  对任意ε>0,要使
    |{[(x^2)+4x-12]/[(x^2)-4]}-2| = |x-2|/|x+2| < |x-2|/3 < ε,
只需 |x-2| < min{1, 3ε},取 η = min{1, 3ε},则当 0<|x-2|<η 时,有
    |{[(x^2)+4x-12]/[(x^2)-4]}-2| < |x-2|/3< η/3 <= ε,
得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式