八年级数学,必好评
2个回答
展开全部
解:(1)猜想:EF=BE+DF.理由如下:
将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,易知点F′、B、E在一直线上.如图1.
∵AF′=AF,
∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF,
又 AE=AE,
∴△AF′E≌△AFE.
∴EF=F′E=BE+DF;
(2)由(1)得 EF=x+y
又 CF=1-y,EC=1-x,
∴(1-y)^2+(1-x)^2=(x+y)^2.
化简可得y=1-x /1+x
(0<x<1);
将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,易知点F′、B、E在一直线上.如图1.
∵AF′=AF,
∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF,
又 AE=AE,
∴△AF′E≌△AFE.
∴EF=F′E=BE+DF;
(2)由(1)得 EF=x+y
又 CF=1-y,EC=1-x,
∴(1-y)^2+(1-x)^2=(x+y)^2.
化简可得y=1-x /1+x
(0<x<1);
更多追问追答
解:(1)猜想:EF=BE+DF.理由如下:
将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,易知点F′、B、E在一直线上.如图.
∵AF′=AF,
∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF,
又 AE=AE,
∴△AF′E≌△AFE.
∴EF=F′E=BE+DF;
(2)由(1)得 EF=x+y
又 CF=1-y,EC=1-x,
∴
(1-y)^2+(1-x)^2=(x+y)^2.
化简可得y=1-x /1+x
(0<x<1);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询