求线性代数n阶行列式的值
ab00......00ab..........000a...........0............................000....abb00........
a b 0 0 ...... 0
0 a b.......... 0
0 0 a...........0
............................
0 0 0 .... a b
b 0 0 ....... 0 a
麻烦写下过程 展开
0 a b.......... 0
0 0 a...........0
............................
0 0 0 .... a b
b 0 0 ....... 0 a
麻烦写下过程 展开
2个回答
展开全部
我来帮你解决吧,答案是(-1)的n+1次方再乘以(n-1)*(2的n-2次方)
由于是网页留言没法用公式编辑器了,我说的意思你懂的,具体解法如下:
由题设可知,这是一个对称行列式,其具体元素如下:
0 1 2 ... n-1
1 0 1 ... n-2
2 1 0 ... n-3
... ...
n-1 n-2 ... 0
现在分别让第一行减去第二行,第二行减去第三行....直至倒数第二行减去倒数第一行,然后倒数第一行保留,行列式变成
-1 1 1 ... 1
-1 -1 1....1
-1 -1 -1 ..1
...........
-1 -1 -1 ..-1
n-1 n-2 ... 0
这个行列式的特点是除去最后一行,是一个以-1为对角线,上三角元素全是1,下三角元素全是-1的行列式
再次第一行减去第二行,第二行减去第三行....直至倒数第二行减去倒数第一行,然后倒数第一行保留,行列式变成
0 2 0 ... 0
0 0 2 ... 0
0 0 0 2 ..0
...........
0 0 ... 0 2
n-1 n-2 ..0
这个行列式就按最后一行展开来计算,只有最后一行第一个元素的余子式不为0,其他余子式都为0 ,所以行列式等于
(-1)的n+1次方*(n-1)*(2的n-2次方)
由于是网页留言没法用公式编辑器了,我说的意思你懂的,具体解法如下:
由题设可知,这是一个对称行列式,其具体元素如下:
0 1 2 ... n-1
1 0 1 ... n-2
2 1 0 ... n-3
... ...
n-1 n-2 ... 0
现在分别让第一行减去第二行,第二行减去第三行....直至倒数第二行减去倒数第一行,然后倒数第一行保留,行列式变成
-1 1 1 ... 1
-1 -1 1....1
-1 -1 -1 ..1
...........
-1 -1 -1 ..-1
n-1 n-2 ... 0
这个行列式的特点是除去最后一行,是一个以-1为对角线,上三角元素全是1,下三角元素全是-1的行列式
再次第一行减去第二行,第二行减去第三行....直至倒数第二行减去倒数第一行,然后倒数第一行保留,行列式变成
0 2 0 ... 0
0 0 2 ... 0
0 0 0 2 ..0
...........
0 0 ... 0 2
n-1 n-2 ..0
这个行列式就按最后一行展开来计算,只有最后一行第一个元素的余子式不为0,其他余子式都为0 ,所以行列式等于
(-1)的n+1次方*(n-1)*(2的n-2次方)
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询