什么是抽屉原理

 我来答
云云最可爱w
高粉答主

推荐于2019-09-30 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:137
采纳率:100%
帮助的人:3.8万
展开全部

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 

抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

第一抽屉原理:

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理:

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

扩展资料:

一般表述:

在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。

在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理的一种更一般的表述为:

“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”

用高斯函数来叙述一般形式的抽屉原理的是:将m个元素放入n个抽屉,则在其中一个抽屉里至少会有

[(m-1)/n]+1个元素。

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

这个问题可以用如下方法简单明了地证出:

在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。

根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。

如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。

不论哪种情形发生,都符合问题的结论。

六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

表现形式:

把它推广到一般情形有以下几种表现形式。

形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。

证明:(反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:

a1+a2+…+an≤1+1+…+1=n<n+1,这与题设矛盾。

所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。

形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。

证明:(反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有:

a1+a2+…+an≤m+m+…+m=nm<nm+1,这与题设相矛盾。

所以,至少有存在一个ai≥m+1

知识扩展——高斯函数[x]定义:对任意的实数x,[x]表示“不大于x的最大整数”。例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1

形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。

证明:(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:

a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n

k个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k]

形式四:设把q1+q2+…+qn-n+1个元素分

为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。

证明:(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,

于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。

所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi

形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。(借由康托的无穷基数可将鸽巢原理推广到无穷集中。)

参考资料:

百度百科-抽屉原理

浮生有梦想
推荐于2019-09-10 · TA获得超过1862个赞
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

抽屉原理指的是桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。又叫鸽巢原理、重叠原理。

抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。为小学六年级课程。在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,5的手套各有两只,同号的两只是一双。

扩展资料:

第一抽屉原理

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理

把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

参考资料:百度百科-抽屉原理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白雪忘冬
高粉答主

推荐于2019-08-19 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376638

向TA提问 私信TA
展开全部

抽屉原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。

抽屉原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。

抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 

抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

扩展资料

运用:

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业。求证这5名学生中,至少有两个人在做同一科作业。

证明:将5名学生看作5个苹果,将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉。由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。即至少有两名学生在做同一科的作业。

2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球。

把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,大于3的最小数字是4。故至少取出4个小球才能符合要求。

参考资料来源:百度百科-抽屉原理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
老天爷他干爹
推荐于2019-11-07 · TA获得超过2552个赞
知道答主
回答量:6
采纳率:33%
帮助的人:2104
展开全部

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 

抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

扩展资料:

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

参考资料:抽屉原理_百度百科



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
纵横竖屏
推荐于2019-11-06 · TA获得超过46.7万个赞
知道小有建树答主
回答量:164
采纳率:93%
帮助的人:7.9万
展开全部

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”

例子:

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

扩展资料:

第一抽屉原理:

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理:

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

参考资料:百度百科-----抽屉原理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(21)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式