2个回答
推荐于2016-08-04 · 知道合伙人教育行家
关注
展开全部
这个题可能是一个错题,
(如果你不这么认为,可以直接无视我下面的解答)
去年我曾经回答过这个题:
f[f(x)-x^2+x]=f(x)-x^2+x,设有且只有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式
应该是别人抄错题目了!
【答案】
f[f(x)-x^2+x]=f(x)-x^2+x
∵ 有且只有一个实数x0,使得f(x0)=x0
∴ f(x)-x^2+x=x0恒成立
即 f(x)=x^2-x+x0
又∵ 有且仅有一个实数x0,使得f(x0)=x0
∴ 方程f(x)-x=0有唯一实根
即:x^2-2x+x0=0 有唯一实根。
△=4-4x0=0
所以x0=1
从而,f(x)=x^2-x+1
展开全部
第一题要分类讨论:
当m=0时,f(x)=x²+|x|为偶函数,
当m≠0时f(-x)=x²+|m+x|≠f(x),f(-x)≠-f(x),所以 f(x) 为非奇非偶函数;
第二题
若 x≤m,则 f(x)=x²-x+m=[x-(1/2)]²+m-(1/4);
当 m≥1/2,则函数f(x)最小在对称轴即x=1/2,所以最小 f(x)=f(1/2)=m-(1/4);
当 m<1/2 ,则函数f(x)在(负无穷,m]上单调递减,所以最小 f(x)=f(m)=m²;
若 x≥m,则 f(x)=x²+x-m=[x+(1/2)]²-m-(1/4);
当 m≤-1/2,则函数f(x)最小在对称轴,即x=1/2,所以最小 f(x)=f(-1/2)=-m-(1/4);
当 m>-1/2,则函数f(x)在[m,正无穷)上单调递增,所以最小 f(x)=f(m)=m²;
综上,当 m≤-1/2,最小 f(x)=-m-(1/4);
当 -1/2<m<1/2,最小 f(x)=m²;
当 m≥1/2,最小 f(x)=m-(1/4);
当m=0时,f(x)=x²+|x|为偶函数,
当m≠0时f(-x)=x²+|m+x|≠f(x),f(-x)≠-f(x),所以 f(x) 为非奇非偶函数;
第二题
若 x≤m,则 f(x)=x²-x+m=[x-(1/2)]²+m-(1/4);
当 m≥1/2,则函数f(x)最小在对称轴即x=1/2,所以最小 f(x)=f(1/2)=m-(1/4);
当 m<1/2 ,则函数f(x)在(负无穷,m]上单调递减,所以最小 f(x)=f(m)=m²;
若 x≥m,则 f(x)=x²+x-m=[x+(1/2)]²-m-(1/4);
当 m≤-1/2,则函数f(x)最小在对称轴,即x=1/2,所以最小 f(x)=f(-1/2)=-m-(1/4);
当 m>-1/2,则函数f(x)在[m,正无穷)上单调递增,所以最小 f(x)=f(m)=m²;
综上,当 m≤-1/2,最小 f(x)=-m-(1/4);
当 -1/2<m<1/2,最小 f(x)=m²;
当 m≥1/2,最小 f(x)=m-(1/4);
追问
请读题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询