已知a、b是整数,且满足a-b是质数,ab是完全平方数,若a≥2011,求a的最小值

 我来答
科创17
2022-08-08 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
a-b=p(质数),由辗转相除法的原理可得出结论:要么p是a,b的公约数,要么a,b互质.如果p是a,b的公约数:令b=np,则a=b+p=(n+1)p,ab=n(n+1)p^2,n(n+1)不可能是完全平方数如果a,b互质:由ab是完全平方数,可知,a和b都是完全平...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式