考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的一
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的一阶偏导数连续,③f(x,y)在点(x0,y0)处可微,④...
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的一阶偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的一阶偏导数存在.则有( )A.②?③?①B.③?②?①C.③?④?①D.③?①?④
展开
1个回答
展开全部
首先,对于多元函数,可偏导,可微,连续,偏导数连续四者有如下关系:
(1)函数可微?函数可偏导;
(2)函数可微?函数连续;
(3)函数偏导数连续?函数可微;
对于选项A:
f(x,y)在点(x0,y0)处的一阶偏导数连续?f(x,y)在点(x0,y0)处可微?f(x,y)在点(x0,y0)处连续,都满足上述三个关系,
故A对.
对于选项B:
f(x,y)在点(x0,y0)处可微不一定能推出f(x,y)在点(x0,y0)处的一阶偏导数连续;即③不能推出②,
故B不对.
对于选项C:
f(x,y)在点(x0,y0)处的一阶偏导数存在不一定能推出f(x,y)在点(x0,y0)处连续;即④不能推出①,
故C不对.
对于选项D:f(x,y)在点(x0,y0)处连续不一定能推出f(x,y)在点(x0,y0)处的一阶偏导数存在;即①不能推出④,
故D不对.
故选:A.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询