若椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率e的取值范围

若椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率e的取值范围.... 若椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率e的取值范围. 展开
 我来答
砿鄿5h
推荐于2016-12-01 · TA获得超过137个赞
知道答主
回答量:188
采纳率:83%
帮助的人:57.6万
展开全部
设椭圆
x2
a2
+
y2
b2
=1
,(a>b>0),P(acosθ,bsinθ),
∵θ≠90,∴不妨设0°<θ<90°,长轴端点A(a,0),
∵点P到椭圆中心和长轴一个端点的连线互相垂直,
∴OP⊥PA,
∴(acosθ,bsinθ)?(acosθ-a,bsinθ)=0,
∴a2(cos2θ-cosθ)+b2sin2θ=0,
整理得
b2
a2
=1-e2

=
cosθ-cos2θ
sin2θ

=
cosθ(1-cosθ)
1-cos2θ

=
cosθ
1+cosθ

∵0°<θ<90°,∴0<cosθ<1,
∴e2=1-
cosθ
1+cosθ
=
1
1+cosθ
∈(
1
2
,1),
∴e∈(
2
2
,1).
∴椭圆离心率e的取值范围是(
2
2
,1).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式