如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边三角形的另一顶点E在腰AB上,点F
如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边三角形的另一顶点E在腰AB上,点F在线段CD上,∠FBC=30°,连接AF.下列结...
如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边三角形的另一顶点E在腰AB上,点F在线段CD上,∠FBC=30°,连接AF.下列结论:①AE=AD; ②AB=BC;③∠DAF=30°;④S△AED:S△CED=1:3;⑤点F是线段CD的中点.其中正确的结论的个数是( )A.5个B.4个C.3个D.2个
展开
1个回答
展开全部
∵在直角梯形ABCD中,AD∥BC,
∴∠DCB+∠ADC=180°,∠BAD=∠B=90°,
∵∠DCB=75°,
∴∠ADC=105°,
∵△DCE是等边三角形,
∴∠EDC=∠DCE=60°,
∴∠EDA=45°,
∴∠AED=45°,
∴AE=AD,
故:①AE=AD此选项正确;
证明:连接AC,
∵∠AED=∠ADE=45°,
∴AE=AD
∵△DCE是等边三角形,
∴CE=CD
∵AC=AC,
∴△ECA≌△ECA,
∴∠ECA=∠DCA=30°,
∵∠DCB=75°,
∴∠ACB=45°
∵∠B=90°,
∴∠CAB=45°,
∴∠CAB=∠ACB,
∴AB=BC;
故②AB=BC选项正确;
解:∵∠FBC=30°,∴∠ABF=60°.
连接AF,BF、AD的延长线相交于点G,
∵∠FBC=30°,∠DCB=75°,
∴∠BFC=75°,故BC=BF.
由②知:BA=BC,故BA=BF,
∵∠ABF=60°,
∴AB=BF=FA,
又∵AD∥BC,AB⊥BC,
∴∠FAG=∠G=30°.
∴③∠DAF=30°此选项正确;
∴FG=FA=FB.
∵∠G=∠FBC=30°,∠DFG=∠CFB,FB=FG,
∴△BCF≌△GDF.
∴DF=CF,即点F是线段CD的中点.
故⑤点F是线段CD的中点此选项正确;
连接AC,交ED与点H,
由以上分析可以易证AC⊥DE,
S△AED:S△CED=
DE?AH:
DE?CH=AH:CH,
∵AE=AD,∠AED=45°,
∴AH=
DE,
∵△EDC为等边三角形,
∴CH=
DE,
∴S△AED:S△CED=1:
∴④选项正确;
故正确的有:5个,
故选:A.
∴∠DCB+∠ADC=180°,∠BAD=∠B=90°,
∵∠DCB=75°,
∴∠ADC=105°,
∵△DCE是等边三角形,
∴∠EDC=∠DCE=60°,
∴∠EDA=45°,
∴∠AED=45°,
∴AE=AD,
故:①AE=AD此选项正确;
证明:连接AC,
∵∠AED=∠ADE=45°,
∴AE=AD
∵△DCE是等边三角形,
∴CE=CD
∵AC=AC,
∴△ECA≌△ECA,
∴∠ECA=∠DCA=30°,
∵∠DCB=75°,
∴∠ACB=45°
∵∠B=90°,
∴∠CAB=45°,
∴∠CAB=∠ACB,
∴AB=BC;
故②AB=BC选项正确;
解:∵∠FBC=30°,∴∠ABF=60°.
连接AF,BF、AD的延长线相交于点G,
∵∠FBC=30°,∠DCB=75°,
∴∠BFC=75°,故BC=BF.
由②知:BA=BC,故BA=BF,
∵∠ABF=60°,
∴AB=BF=FA,
又∵AD∥BC,AB⊥BC,
∴∠FAG=∠G=30°.
∴③∠DAF=30°此选项正确;
∴FG=FA=FB.
∵∠G=∠FBC=30°,∠DFG=∠CFB,FB=FG,
∴△BCF≌△GDF.
∴DF=CF,即点F是线段CD的中点.
故⑤点F是线段CD的中点此选项正确;
连接AC,交ED与点H,
由以上分析可以易证AC⊥DE,
S△AED:S△CED=
1 |
2 |
1 |
2 |
∵AE=AD,∠AED=45°,
∴AH=
1 |
2 |
∵△EDC为等边三角形,
∴CH=
| ||
2 |
∴S△AED:S△CED=1:
3 |
∴④选项正确;
故正确的有:5个,
故选:A.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询