(2008?福建)如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥A
(2008?福建)如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2...
(2008?福建)如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为32?若存在,求出AQQD的值;若不存在,请说明理由.
展开
展开全部
解:(Ⅰ)证明:在△PAD中,PA=PD,O为AD的中点,所以PO⊥AD
又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD
所以PO⊥平面ABCD.
(Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC
且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC
由(Ⅰ)知PO⊥OB,∠PBC是锐角,
所以∠PBC是异面直线PB与CD所成的角
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=
在Rt△AOP中 因为AP=
AO=1,所以OP=1
在Rt△AOP中tan∠PBC=
=
=
, ∠PBC=arctan
所以:异面直线PB与CD所成角的大小arctan
.
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为
又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD
所以PO⊥平面ABCD.
(Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC
且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC
由(Ⅰ)知PO⊥OB,∠PBC是锐角,
所以∠PBC是异面直线PB与CD所成的角
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=
2 |
在Rt△AOP中 因为AP=
2 |
在Rt△AOP中tan∠PBC=
PC |
BC |
1 | ||
|
| ||
2 |
| ||
2 |
所以:异面直线PB与CD所成角的大小arctan
| ||
2 |
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为
| ||
2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|