2个回答
展开全部
f(x)=√2sin(2x+π/3)
=√2sin(2x+2π+π/3)
=√2sin[2(x+π)+π/3]
∴最小正周期=π
∵2kπ-π/2<2x+π/3<2kπ+π/2
即 kπ-5π/12<x<kπ+π/12
∴f(x)在kπ-5π/12<x<kπ+π/12单增
∵2kπ+π/2<2x+π/3<2kπ+3π/2
即 kπ+π/12<x<kπ+7π/12
∴f(x)在kπ+π/12<x<kπ+7π/12单减
∵0<x<π/2
即 2π/3<2x+π/3<5π/3
f(x)在2x+π/3∈(2π/3,3π/2)递减,在2x+π/3∈(3π/2,5π/3)递增,
在2x+π/3=2π/3 函数值=√6/2,最大
在2x+π/3=3π/2时,函数值最小=-√2
∴函数在[0,,2分之π】的值域:[-√2, √6/2]
=√2sin(2x+2π+π/3)
=√2sin[2(x+π)+π/3]
∴最小正周期=π
∵2kπ-π/2<2x+π/3<2kπ+π/2
即 kπ-5π/12<x<kπ+π/12
∴f(x)在kπ-5π/12<x<kπ+π/12单增
∵2kπ+π/2<2x+π/3<2kπ+3π/2
即 kπ+π/12<x<kπ+7π/12
∴f(x)在kπ+π/12<x<kπ+7π/12单减
∵0<x<π/2
即 2π/3<2x+π/3<5π/3
f(x)在2x+π/3∈(2π/3,3π/2)递减,在2x+π/3∈(3π/2,5π/3)递增,
在2x+π/3=2π/3 函数值=√6/2,最大
在2x+π/3=3π/2时,函数值最小=-√2
∴函数在[0,,2分之π】的值域:[-√2, √6/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询