OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图1

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落... OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕y1所在直线的解析式;(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E'.①求折痕AD所在直线的解析式;②再作E'F∥AB,交AD于点F.若抛物线y=-112x2+h过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数.(3)如图3,一般地,在OC、OA上选取适当的点D'、G',使纸片沿D'G'翻折后,点O落在BC边上,记为E''.请你猜想:折痕D'G'所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想. 展开
 我来答
3453499319
2015-01-23 · TA获得超过172个赞
知道答主
回答量:118
采纳率:40%
帮助的人:60.7万
展开全部
(1)由折叠法知,四边形OCEG是正方形,
∴OG=OC=6,
∴G(6,0),C(0,6).
设直线CG的解析式为y=kx+b,
则0=6k+b,6=0+b,
∴k=-1,b=6,
∴直线CG的解析式为:y=-x+6.

(2)①在Rt△ABE'中,BE'=
102?62
=8,
∴CE′=2.
设OD=s,则DE'=s,CD=6-s,
在Rt△DCE'中,s2=(6-s)2+22
∴s=
10
3

则D(0,
10
3

设AD:y=k'x+
10
3

由于它过A(10,0),
∴k'=-
1
3

∴AD:y=-
1
3
x+
10
3

②∵E'F∥AB,E'(2,6),
∴设F(2,yF),
∵F在AD上,
∴yF=-
1
3
×2+
10
3
=
8
3

∴F(2,
8
3
).
又∵点F在抛物线y=-
1
12
x2+h上,
8
3
=-
1
12
×4+h,
∴h=3.
∴抛物线的解析式为:y=-
1
12
x2+3.
即-
1
12
x2+
1
3
x-
1
3
=0,
∵△=(
1
3
2-4×(-
1
12
)×(-
1
3
)=0
∴直线AD与抛物线只有一个交点.

(3)例如可以猜想:
(ⅰ)折痕所在直线与抛物线y=-
1
12
x2+3只有一个交点;
或(ⅱ)若作E''F''∥AB,交D'G'于F',则F'在抛物线y=-
1
12
x2+3上.
验证:(ⅰ)在图1中,折痕为CG,
将y=-x+6代入y=-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式