如图,在正方体ABCD-A1B1C1D1,E、F分别是BB1、CD的中点.(1)求证:AE⊥D1F;(2)求证:AE⊥平面A1D1F
如图,在正方体ABCD-A1B1C1D1,E、F分别是BB1、CD的中点.(1)求证:AE⊥D1F;(2)求证:AE⊥平面A1D1F....
如图,在正方体ABCD-A1B1C1D1,E、F分别是BB1、CD的中点.(1)求证:AE⊥D1F;(2)求证:AE⊥平面A1D1F.
展开
1个回答
展开全部
(1)取AB中点G,连结A1G、FG
∵FG是正方形ABCD的对边中点的连线,∴FG
AD
∵A1D1
AD,∴FG
A1D1,可得四边形GFD1A1是平行四边形,
所以A1G∥D1F.
设A1G与AE相交于点H,∠AHA1是AE与D1F所成的角.
∵正方形ABA1B1中,G、E分别是AB、BB1的中点,
∴Rt△A1AG≌Rt△ABE,得∠GA1A=∠BAE=90°-∠A1AE
∴∠GA1A+∠A1AE=90°,得∠AHA1=90°即AE⊥A1G,
结合A1G∥D1F,得AE⊥D1F;
(2)∵正方体ABCD-A1B1C1D1中,
A1D1⊥平面ABB1A1,且AE?平面ABB1A1,
∴A1D1⊥AE,
又∵AE⊥D1F,A1D1∩D1F1=D1,
∴AE⊥平面A1D1F.
∵FG是正方形ABCD的对边中点的连线,∴FG
∥ |
. |
∵A1D1
∥ |
. |
∥ |
. |
所以A1G∥D1F.
设A1G与AE相交于点H,∠AHA1是AE与D1F所成的角.
∵正方形ABA1B1中,G、E分别是AB、BB1的中点,
∴Rt△A1AG≌Rt△ABE,得∠GA1A=∠BAE=90°-∠A1AE
∴∠GA1A+∠A1AE=90°,得∠AHA1=90°即AE⊥A1G,
结合A1G∥D1F,得AE⊥D1F;
(2)∵正方体ABCD-A1B1C1D1中,
A1D1⊥平面ABB1A1,且AE?平面ABB1A1,
∴A1D1⊥AE,
又∵AE⊥D1F,A1D1∩D1F1=D1,
∴AE⊥平面A1D1F.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询