(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;(2)设a,b,c∈(0,+∞),且a+b+c

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(1a?1)(1b?1)(1c?... (1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(1a?1)(1b?1)(1c?1)≥8. 展开
 我来答
德后的百4153
推荐于2016-12-04 · TA获得超过566个赞
知道答主
回答量:103
采纳率:0%
帮助的人:140万
展开全部
解答:证明:(1)要证a2+b2+c2>ab+bc+ca,只需证2(a2+b2+c2)>2(ab+bc+ca)
即证(a+b)2+(b+c)2+(a+c)2>0,
因为a,b,c是不全相等的实数,所以(a+b)2>0,(b+c)2>0,(a+c)2>0,
所以(a+b)2+(b+c)2+(a+c)2>0显然成立.
所以a2+b2+c2>ab+bc+ca;
(2)∵a、b、c∈(0,+∞)且a+b+c=1,
(
1
a
?1)(
1
b
?1)(
1
c
?1)=
b+c
a
?
a+c
b
?
a+b
c
2
bc
a
?
2
ac
b
?
2
ab
c
=8
当且仅当a=b=c=
1
3
时等号成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式