一3的平方是多少?
展开全部
求证的方法有很多,我以前是通过组合数的规律来思考的(2n+1)(n+1)n/6
我们可以通过组合数的一共公式来考虑:(n,k)+(n,k+1)=(n+1,k+1),这里用到的是k=2的情况,即(n,2)+(n,3)=(n+1,3)算一下就知道这公式是否正确了。
下面可以计算了。n^2=2(n+1,2)-n,所以1^2+2^2+3^2+…+n^2求和可以分为两部分,
简单的"n"求和就是1+2+……+n=(n+1)n/2
"2(n+1,2)"求和的话,我们先思考“(n+1,2)”的求和,即为(2,2)+(3,2)+(4,2)+……+(n+1,2),这时利用公式(n,2)+(n,3)=(n+1,3),令n=3,有(3,2)+(3,3)=(4,3),因为(2,2)=(3,3),所以,(2,2)+(3,2)=(3,3)+(3,2)=(4,3),继续加,(4,3)+(4,2)=(5,3),(5,3)+(5,2)=(6,3)……可以一直加下去,最后得到(n+2,3),所以“(n+1,2)”的求和答案就是(n+2,3)=(n+2)(n+1)n/6,乘以前面的2,就是(n+2)(n+1)n/3,再减去(n+1)n/2,就等于(2n+1)(n+1)n/6
这样可以么?
我们可以通过组合数的一共公式来考虑:(n,k)+(n,k+1)=(n+1,k+1),这里用到的是k=2的情况,即(n,2)+(n,3)=(n+1,3)算一下就知道这公式是否正确了。
下面可以计算了。n^2=2(n+1,2)-n,所以1^2+2^2+3^2+…+n^2求和可以分为两部分,
简单的"n"求和就是1+2+……+n=(n+1)n/2
"2(n+1,2)"求和的话,我们先思考“(n+1,2)”的求和,即为(2,2)+(3,2)+(4,2)+……+(n+1,2),这时利用公式(n,2)+(n,3)=(n+1,3),令n=3,有(3,2)+(3,3)=(4,3),因为(2,2)=(3,3),所以,(2,2)+(3,2)=(3,3)+(3,2)=(4,3),继续加,(4,3)+(4,2)=(5,3),(5,3)+(5,2)=(6,3)……可以一直加下去,最后得到(n+2,3),所以“(n+1,2)”的求和答案就是(n+2,3)=(n+2)(n+1)n/6,乘以前面的2,就是(n+2)(n+1)n/3,再减去(n+1)n/2,就等于(2n+1)(n+1)n/6
这样可以么?
展开全部
9
追答
(-3)=(-1)×(3)=3=9
我的回答你还满意吗?如有疑问请继续追问我
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-11-16
展开全部
(-3)=9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
9啊
追答
望采纳,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询