加权平均数的权是什么
展开全部
问题一:加权平均数的权是什么 这里的“权”即权重、各个数据所占的比例。在教学中我是这样告诉学生的:这类题目有很明确的两种数据,只要先把这两种数据找出来,再根据题目的最后需要计算的是哪种数据,已经找出来的两种数据中除要计算的这种数据外,另一种数据即为“权”(注意:权必须在分母中相加)。
问题二:加权平均数是什么意思? 加权平均数 加权平均数的概念
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,
若 n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么(x1f1 + x2f2 + ... xkfk)/ (f1 + f2 + ... + fk) 叫做x1,x2,…,xk的加权平均数。f1,f2,…,fk是x1,x2,…,xk的权.
x1f1 + x2f2 + ... xkfk
xy的权= -----------------------------
f1 + f2 + ... + fk
简单的例子就是:
你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是:
80×40%+90×60%=86
学校食堂吃饭,吃三碗的有 x 人,吃两碗的有 y 人,吃一碗的 z 人。平均每人吃多少?
(3*x + 2*y + 1*z)/(x + y + z)
这里3、2、1分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。
=============================
当一组数据中的某些数重复出现几次时,那么它们的平均数的表示形式发生了一定的变化.例如,某人射击十次,其中二次射中10环,三次射中8环,四次射中7环,一次射中9环,那么他平均射中的环数为
(10*2 + 9*1 + 8*3 + 7*4 )/10 = 8.1
这里,7,8,9,10这四个数是射击者射中的几个不同环数,但它们出现的频数不同,分别为4,3,l,2,数据的频数越大,表明它对整组数据的平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重,上面的平均数称为加权平均数,不难看出,各个数据的权重之和恰为10.
在加权平均数中,除了一组数据中某一个数的频数称为权重外,权重还有更广泛的含义.
比如在一些体育比赛项目中,也要用到权重的思想.比如在跳水比赛中,每个运动员除完成规定动作外,还要完成一定数量的自选动作,而自选动作的难度是不同的,两位选手由于所选动作的难度系数不同,尽管完成各自动作的质量相同,但得分也是不相同的,难度系数大的运动员得分应该高些,难度系数实际上起着权重的作用.
而普通的算术平均数的权重相等,都是1,(比如,3和5的平均数为4)也就是说它们的重要性相同,所以平均数是特殊的加权平均数.
加权平均数的概念
加权平均数是不同比重数据的平均数,用 表示。计算公式如下:
(4.3)
在这里, 表示各观察值的权重;
表示具有不同比重的观察值。
加权平均数的计算方法
例1,某学生某科平时考试成绩为80分,期中考试成绩为90分,期末考试成绩为95分。按学校规定学期成绩中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%。问该学生学期总评成绩应为多少分?
所以,该学生学期总评成绩为90.5分。
例2,某年级各班的一次考试成绩如下表,求全年级的总平均分。
按公式(4.3)计算如下:
所以,全年级的总平均分为69.4...>>
问题三:加权平均数中的“权”是什么意思?(简要回答即可,不需要举例子) 10分 “权”的古代含义为秤砣,就是秤上可以滑动以观察质量的那个铁疙瘩。《孟子・梁惠王上》曰:“权,然后知轻重。”就是这意思。
1.在日常生活中,我们常用平均数表示一组数据的‘平均水平’。
2.在一组数据里,一个数据出现的次数称为权。
问题四:什么是加权平均 一般来说,平均数反映了一组数据的一般水平,利用平均数,可以从横向和纵向两个方面对事物进行分析比较,从而得出结论.例如,要想比较同一年级的两个班同学学习成绩,如果用每个班的总成绩进行比较,会由于班级人数不同,而使比较失去真正意义.但是如果用平均分数去比较,就可以把各班的平均水平呈现出来.从纵向的角度来看,可以对同一个事物在不同的时间内的情况利用平均数反映出来,例如,通过两个不同时间人均年收入来比较人们生活水平、经济发展等状况.
要理解加权是什么意思,首先需要理解什么叫“权”,“权”的古代含义为秤砣,就是秤上可以滑动以观察质量的那个铁疙瘩。《孟子・梁惠王上》曰:“权,然后知轻重。”就是这意思。 例子:学校算期末成绩,期中考试占30%,期末考试占50%,作业占20%,假如某人期中考试得了84,期末92,作业分91,如果是算数平均,那么就是(84+92+91)/3=89; 加权后的,那么加权处理后就是84*30%+92*50%+91*20%=89.4,这是在已知权重的情况下; 那么未知权重的情况下呢?想知道两个班的化偿加权平均值,一班50人,平均80,二班60人,平均82,算数平均是(80+82)/2=81,加权后是(50*80+60*82)/(50+60)=81.09.还有一种情况类似第一种也是人为规定,比如说你觉得专家的分量比较大,老师其次,学生最低,就某观点,满分10分的情况下,专家打8分,老师打6分,学生打7分,但你认为专家权重和老师及学生权重应为0.5:0.3:0.2,那么加权后就是8*0.5+6*0.3+7*0.2=7.2,而算数平均的话就是(8+6+7)/3=7。
问题二:加权平均数是什么意思? 加权平均数 加权平均数的概念
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,
若 n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么(x1f1 + x2f2 + ... xkfk)/ (f1 + f2 + ... + fk) 叫做x1,x2,…,xk的加权平均数。f1,f2,…,fk是x1,x2,…,xk的权.
x1f1 + x2f2 + ... xkfk
xy的权= -----------------------------
f1 + f2 + ... + fk
简单的例子就是:
你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是:
80×40%+90×60%=86
学校食堂吃饭,吃三碗的有 x 人,吃两碗的有 y 人,吃一碗的 z 人。平均每人吃多少?
(3*x + 2*y + 1*z)/(x + y + z)
这里3、2、1分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。
=============================
当一组数据中的某些数重复出现几次时,那么它们的平均数的表示形式发生了一定的变化.例如,某人射击十次,其中二次射中10环,三次射中8环,四次射中7环,一次射中9环,那么他平均射中的环数为
(10*2 + 9*1 + 8*3 + 7*4 )/10 = 8.1
这里,7,8,9,10这四个数是射击者射中的几个不同环数,但它们出现的频数不同,分别为4,3,l,2,数据的频数越大,表明它对整组数据的平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重,上面的平均数称为加权平均数,不难看出,各个数据的权重之和恰为10.
在加权平均数中,除了一组数据中某一个数的频数称为权重外,权重还有更广泛的含义.
比如在一些体育比赛项目中,也要用到权重的思想.比如在跳水比赛中,每个运动员除完成规定动作外,还要完成一定数量的自选动作,而自选动作的难度是不同的,两位选手由于所选动作的难度系数不同,尽管完成各自动作的质量相同,但得分也是不相同的,难度系数大的运动员得分应该高些,难度系数实际上起着权重的作用.
而普通的算术平均数的权重相等,都是1,(比如,3和5的平均数为4)也就是说它们的重要性相同,所以平均数是特殊的加权平均数.
加权平均数的概念
加权平均数是不同比重数据的平均数,用 表示。计算公式如下:
(4.3)
在这里, 表示各观察值的权重;
表示具有不同比重的观察值。
加权平均数的计算方法
例1,某学生某科平时考试成绩为80分,期中考试成绩为90分,期末考试成绩为95分。按学校规定学期成绩中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%。问该学生学期总评成绩应为多少分?
所以,该学生学期总评成绩为90.5分。
例2,某年级各班的一次考试成绩如下表,求全年级的总平均分。
按公式(4.3)计算如下:
所以,全年级的总平均分为69.4...>>
问题三:加权平均数中的“权”是什么意思?(简要回答即可,不需要举例子) 10分 “权”的古代含义为秤砣,就是秤上可以滑动以观察质量的那个铁疙瘩。《孟子・梁惠王上》曰:“权,然后知轻重。”就是这意思。
1.在日常生活中,我们常用平均数表示一组数据的‘平均水平’。
2.在一组数据里,一个数据出现的次数称为权。
问题四:什么是加权平均 一般来说,平均数反映了一组数据的一般水平,利用平均数,可以从横向和纵向两个方面对事物进行分析比较,从而得出结论.例如,要想比较同一年级的两个班同学学习成绩,如果用每个班的总成绩进行比较,会由于班级人数不同,而使比较失去真正意义.但是如果用平均分数去比较,就可以把各班的平均水平呈现出来.从纵向的角度来看,可以对同一个事物在不同的时间内的情况利用平均数反映出来,例如,通过两个不同时间人均年收入来比较人们生活水平、经济发展等状况.
要理解加权是什么意思,首先需要理解什么叫“权”,“权”的古代含义为秤砣,就是秤上可以滑动以观察质量的那个铁疙瘩。《孟子・梁惠王上》曰:“权,然后知轻重。”就是这意思。 例子:学校算期末成绩,期中考试占30%,期末考试占50%,作业占20%,假如某人期中考试得了84,期末92,作业分91,如果是算数平均,那么就是(84+92+91)/3=89; 加权后的,那么加权处理后就是84*30%+92*50%+91*20%=89.4,这是在已知权重的情况下; 那么未知权重的情况下呢?想知道两个班的化偿加权平均值,一班50人,平均80,二班60人,平均82,算数平均是(80+82)/2=81,加权后是(50*80+60*82)/(50+60)=81.09.还有一种情况类似第一种也是人为规定,比如说你觉得专家的分量比较大,老师其次,学生最低,就某观点,满分10分的情况下,专家打8分,老师打6分,学生打7分,但你认为专家权重和老师及学生权重应为0.5:0.3:0.2,那么加权后就是8*0.5+6*0.3+7*0.2=7.2,而算数平均的话就是(8+6+7)/3=7。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
绿知洲
2024-11-13 广告
2024-11-13 广告
交通噪声预测计算主要依据车辆类型、平均辐射声级、交通量、行驶速度、距离衰减量、公路纵坡和路面等因素。预测时,需先确定各参数,如车型分类、平均行驶速度、噪声源强等。通过公式计算,可得出预测点接收到的交通噪声值。预测过程还需考虑几何发散、大气吸...
点击进入详情页
本回答由绿知洲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询