求不定积分:∫ 1/(3+cosx) dx?
1个回答
展开全部
令x=2u,则:u=x/2,dx=2du.
∴∫[1/(3+cosx)]dx
=2∫[1/(3+cos2u)]du
=2∫{1/[3+2(cosu)^2-1]}du
=2∫{1/[2+2(cosu)^2]}du
=∫{1/[1+(cosu)^2]du
=∫{1/[2(cosu)^2+(sinu)^2]}du
=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du
=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)
=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]
=(√2/2)arctan[(1/√2)tanu]+C
=(√2/2)arctan[(√2/2)tan(x/2)]+C,2,x=2u,u=x/2,dx=2du。
因为∫[1/(3+cosx)]dx
所以 =
(√2/2)arctan[(√2/2)tan(x/2)]+C,1,
∴∫[1/(3+cosx)]dx
=2∫[1/(3+cos2u)]du
=2∫{1/[3+2(cosu)^2-1]}du
=2∫{1/[2+2(cosu)^2]}du
=∫{1/[1+(cosu)^2]du
=∫{1/[2(cosu)^2+(sinu)^2]}du
=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du
=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)
=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]
=(√2/2)arctan[(1/√2)tanu]+C
=(√2/2)arctan[(√2/2)tan(x/2)]+C,2,x=2u,u=x/2,dx=2du。
因为∫[1/(3+cosx)]dx
所以 =
(√2/2)arctan[(√2/2)tan(x/2)]+C,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询