已知数列{a n }满足: a 1 =1, a n+1 = 1 2 a n +n,n为奇数
已知数列{an}满足:a1=1,an+1=12an+n,n为奇数an-2n,n为偶数(I)求a2,a3;(II)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列...
已知数列{a n }满足: a 1 =1, a n+1 = 1 2 a n +n,n为奇数 a n -2n,n为偶数 (I)求a 2 ,a 3 ;(II)设 b n = a 2n -2,n∈ N * ,求证:数列{b n }是等比数列,并求其通项公式;(Ⅲ)求数列{a n }前20项中所有奇数项的和.
展开
(Ⅰ)令n=1,得a 2 = a 1 +1= ,令n=2,得a 3 =a 2 -4=- . (II)b 1 =a 2 -2=- ,且 = = = (a 2n -2×2n)+2n-1 | a 2n -2 | = ,是一个与n无关的常数. 所以数列{b n }是等比数列,其通项公式b n =- ( ) n (Ⅲ)由(II)可得a 2n =2+b n . 数列{a n }前20项中所有奇数项的和S=a 1 +a 3 +a 5 +…+a 19 =a 1 + ( a 2 -2×1) + ( a 4 -2×2) +…+ ( a 18 -2×18) =1-(1+2+4+…18)+ (a 2 +a 4 +…a 18 ) =-90+ (2+b 1 +2+b 2 +…2+b 9 )=-90+ (18+ )=-90+9- + = - |
收起
为你推荐: