已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,
已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,...
已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:CF=BC-CD.(2)当点D在线段BC的延长线上(如图2),在线段CB的延长线上(如图3)时,其它条件不变,(1)中结论是否成立?若成立请选择一种情况进行证明,如不成立,请直接写出新的关系式不需证明.
展开
展开全部
(1)证明:∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=BC-CD;
(2)解:(1)中结论不成立,图2中的关系式为:CF=BC+CD.理由如下:
∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°
∵∠BAC=90°,
∴∠BAC+∠DAC=∠DAF+∠DAC,
即∠BAD=∠CAF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=BC+CD;
图3中的关系式为:CF=CD-BC.理由如下:
∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF-∠BAC=∠BAC-∠BAF,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=CD-BC.
∴AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
|
∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=BC-CD;
(2)解:(1)中结论不成立,图2中的关系式为:CF=BC+CD.理由如下:
∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°
∵∠BAC=90°,
∴∠BAC+∠DAC=∠DAF+∠DAC,
即∠BAD=∠CAF,
在△ABD和△ACF中,
|
∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=BC+CD;
图3中的关系式为:CF=CD-BC.理由如下:
∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF-∠BAC=∠BAC-∠BAF,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
|
∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=CD-BC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询