已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,

已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,... 已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:CF=BC-CD.(2)当点D在线段BC的延长线上(如图2),在线段CB的延长线上(如图3)时,其它条件不变,(1)中结论是否成立?若成立请选择一种情况进行证明,如不成立,请直接写出新的关系式不需证明. 展开
 我来答
初見专属1lQb
2014-08-26 · 超过70用户采纳过TA的回答
知道答主
回答量:191
采纳率:100%
帮助的人:62.2万
展开全部
(1)证明:∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=BC-CD;

(2)解:(1)中结论不成立,图2中的关系式为:CF=BC+CD.理由如下:
∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°
∵∠BAC=90°,
∴∠BAC+∠DAC=∠DAF+∠DAC,
即∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=BC+CD;
图3中的关系式为:CF=CD-BC.理由如下:
∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF-∠BAC=∠BAC-∠BAF,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△ABD≌△ACF(SAS),
∴BD=CF,
∴CF=CD-BC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式