数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn.(1)求Sn;(2)bn=S3nn?4n,求数列{bn}的
数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn.(1)求Sn;(2)bn=S3nn?4n,求数列{bn}的前n项和Tn....
数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn.(1)求Sn;(2)bn=S3nn?4n,求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
(1)由于cos2
?sin2
=cos
,an=n2?cos
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(?
+32)+(?
+62)+…+[?
+(3k)2]
=
+
+…+
=
S3k?1=S3k?a3k=
,
S3k?2=S3k?1?a3k?1=
+
=
?k=?
?
,
故Sn=
(k∈N*)
(2)bn=
=
,
Tn=
[
+
+…+
],
4Tn=
[13+
+…+
],
两式相减得3Tn=
[13+
+…+
?
]=
[13+
?
]=8?
?
,
故Tn=
?
?
.
nπ |
3 |
nπ |
3 |
2nπ |
3 |
2nπ |
3 |
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(?
12+22 |
2 |
42+52 |
2 |
(3k?2)2+(3k?1)2 |
2 |
=
13 |
2 |
31 |
2 |
18k?5 |
2 |
k(4+9k) |
2 |
S3k?1=S3k?a3k=
k(4?9k) |
2 |
S3k?2=S3k?1?a3k?1=
k(4?9k) |
2 |
(3k?1)2 |
2 |
1 |
2 |
3k?2 |
3 |
1 |
6 |
故Sn=
|
(2)bn=
S3n |
n?4n |
9n+4 |
2?4n |
Tn=
1 |
2 |
13 |
4 |
22 |
42 |
9n+4 |
4n |
4Tn=
1 |
2 |
22 |
4 |
9n+4 |
4n?1 |
两式相减得3Tn=
1 |
2 |
9 |
4 |
9 |
4n?1 |
9n+4 |
4n |
1 |
2 |
| ||||
1?
|
9n+4 |
4n |
1 |
22n?3 |
9n |
22n+1 |
故Tn=
8 |
3 |
1 |
3?22n?3 |
3n |
22n+1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询