
3个回答
展开全部
写出系数矩阵为
1 1 1 0
2 -1 8 3
2 3 0 -1 r2-2r1,r3-2r1
~
1 1 1 0
0 -3 6 3
0 1 -2 -1 r2+3r3,r1-r3,交换r2和r3
~
1 0 3 1
0 1 -2 -1
0 0 0 0
秩为2,那么有4-2=2个解向量
分别为(-3,2,1,0)^T和(-1,1,0,1)^T,
故解得方程组的解为
c1*(-3,2,1,0)^T +c2* (-1,1,0,1)^T,c1c2为常数
1 1 1 0
2 -1 8 3
2 3 0 -1 r2-2r1,r3-2r1
~
1 1 1 0
0 -3 6 3
0 1 -2 -1 r2+3r3,r1-r3,交换r2和r3
~
1 0 3 1
0 1 -2 -1
0 0 0 0
秩为2,那么有4-2=2个解向量
分别为(-3,2,1,0)^T和(-1,1,0,1)^T,
故解得方程组的解为
c1*(-3,2,1,0)^T +c2* (-1,1,0,1)^T,c1c2为常数
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询