求tanπ/9+4sinπ/9的值
1个回答
展开全部
原式=sin(π/9)/cos(π/9)+(4sinπ/9×cosπ/9)/cosπ/9
=[sinπ/9+2sin2π/9]/cosπ/9
=[sinπ/9+sin2π/9+sin2π/9]/cosπ/9
={2sin[(π/9+2π/9)/2]cos[(π/9-2π/9)/2+sin2π/9}/cosπ/9
=[cosπ/18+sin2π/9]/cosπ/9
=[sin(π/2-π/18)+sin2π/9]/cosπ/9
=2sin[(4π/9+2π/9)/2]cos[(4π/9-2π/9)/2]/cosπ/9
=[2sinπ/3cosπ/9]/cosπ/9
=根号3
=[sinπ/9+2sin2π/9]/cosπ/9
=[sinπ/9+sin2π/9+sin2π/9]/cosπ/9
={2sin[(π/9+2π/9)/2]cos[(π/9-2π/9)/2+sin2π/9}/cosπ/9
=[cosπ/18+sin2π/9]/cosπ/9
=[sin(π/2-π/18)+sin2π/9]/cosπ/9
=2sin[(4π/9+2π/9)/2]cos[(4π/9-2π/9)/2]/cosπ/9
=[2sinπ/3cosπ/9]/cosπ/9
=根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询