高数用泰勒公式求极限,求详解
展开全部
ln(1+1/x)
f(y) = ln(1+y)
= f(0) +f'(0)x/1! + f'(0)x^2/2!+...
= y-y^2/2 + y^3/3+...
y=1/x
ln(1+1/x) = 1/x - 1/(2x^2) + 1/(3x^3) +...
f(y) = ln(1+y)
= f(0) +f'(0)x/1! + f'(0)x^2/2!+...
= y-y^2/2 + y^3/3+...
y=1/x
ln(1+1/x) = 1/x - 1/(2x^2) + 1/(3x^3) +...
更多追问追答
追问
??
追答
f(y) = ln(1+y) =>f(0) = 0
f'(y) = 1/(1+y) =>f'(0) = 1
f''(y) = -1/(1+y)^2 => f''(0) = -1
f'''(y) = 2/(1+y)^3 =>f'''(0) = 2
f(y) = f(0) + f'(0)y/1! + f''(0)y^2/2! + f'''(0)y^3/3!+...
= y - y^2/2 +y^3/3 +....
= ln(1+y)
带入
y =1/x
ln(1 +1/x)= (1/x) - 1/(2x^2) +1/(3x^3) +....
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询