函数的有界和无界搞不懂,可不可以举个例区分下

 我来答
是你找到了我
高粉答主

2019-05-27 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:46.1万
展开全部

有界:sinx和cosx在R上是有界的。

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。

无界:y=tanx在开区间(-π/2,π/2)上是无界。y=x,在R内无界。

无界函数,即不是有界函数的函数。也就是说,函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。

扩展资料:

需要注意的是,有界函数的图形必介于两条平行于x轴的直线y=-M(下界)和y=M(上界)之间(当自变量为x时),笼统地说某个函数是有界函数或无界函数是不确切的,必须指明所考虑的区间。

另外,不能够把无穷大和一个很大常数混为一谈。无穷大一定是无界函数,但无界函数不一定是无穷大。

参考资料来源:百度百科-函数的有界性

百度百科-无界函数

帐号已注销
推荐于2019-09-19 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:17万
展开全部

值域是有限区间的函数,是有界函数。值域是无限区间的函数是无界函数。

例如,正弦函数y=sinx,对任意x∈(-∞,+∞),|sinx|≤1恒成立,所以y=sinx是R上的有界函数。

有的函数在定义域的部分区间上可能是有界的。

例如,一次函数y=2x+1,定义域(-∞,+∞),值域(-∞,+∞).它在定义域(-∞,+∞)上是无界的。但是它在区间(-1,2)上,值域(-1,5),它是有界的。事实上,它在定义域的任意的真子集上都是有界的。

有的函数在定义域的部分区间上可能是无界的。

例如,反比例函数y=1/x,定义域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).它在定义域(-∞,0)∪(0,+∞)上是无界的。它在区间(0,1)内,值域(1,+∞),它是无界的. 当然,它在区间(1,+∞)内,值域(0,1),它是有界的。

扩展资料:

有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

由ƒ (x)=sinx所定义的函数f:R→R是有界的。如果正弦函数是定义在所有复数的集合上,则不再是有界的。 函数 (x不等于-1或1)是无界的。当x越来越接近-1或1时,函数的值就变得越来越大。但是,如果把函数的定义域限制为[2, ∞).,则函数就是有界的。

函数是有界的。

任何一个连续函数f:[0,1] →R都是有界的。 考虑这样一个函数:当x是有理数时,函数的值是0,而当x是无理数时,函数的值是1。这个函数是有界的。有界函数并不一定是连续的。

有界函数的图形必介于两条平行于x轴的直线y=-M和y=M之间(当自变量为x时),笼统地说某个函数是有界函数或无界函数是不确切的,必须指明所考虑的区间。

例如,函数  在  内是有界的,因为对任意 ,存在M=1,使得  恒成立。

函数 在开区间  上是无界的。

函数  在开区间(0,1)内是无界的,而函数  在区间[1,2]内是有界的。

函数  是有界函数,因为在其定义域  内恒有  。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
AAA大法王
2019-12-21 · 知道合伙人宗教行家
AAA大法王
知道合伙人宗教行家
采纳数:30032 获赞数:200582
佛教客座教授 跟随密宗正规传承 上师 活佛 修行学习密宗秘法

向TA提问 私信TA
展开全部

值域是有限区间的函数,是有界函数。值域是无限区间的函数是无界函数。

例如,正弦函数y=sinx,对任意x∈(-∞,+∞),|sinx|≤1恒成立,所以y=sinx是R上的有界函数。

有的函数在定义域的部分区间上可能是有界的。

例如,一次函数y=2x+1,定义域(-∞,+∞),值域(-∞,+∞).它在定义域(-∞,+∞)上是无界的。但是它在区间(-1,2)上,值域(-1,5),它是有界的。事实上,它在定义域的任意的真子集上都是有界的。

有的函数在定义域的部分区间上可能是无界的。

例如,反比例函数y=1/x,定义域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).它在定义域(-∞,0)∪(0,+∞)上是无界的。它在区间(0,1)内,值域(1,+∞),它是无界的. 当然,它在区间(1,+∞)内,值域(0,1),它是有界的。



向左转|向右转


扩展资料:

有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

由ƒ (x)=sinx所定义的函数f:R→R是有界的。如果正弦函数是定义在所有复数的集合上,则不再是有界的。 函数 (x不等于-1或1)是无界的。当x越来越接近-1或1时,函数的值就变得越来越大。但是,如果把函数的定义域限制为[2, ∞).,则函数就是有界的。

函数是有界的。

任何一个连续函数f:[0,1] →R都是有界的。 考虑这样一个函数:当x是有理数时,函数的值是0,而当x是无理数时,函数的值是1。这个函数是有界的。有界函数并不一定是连续的。

有界函数的图形必介于两条平行于x轴的直线y=-M和y=M之间(当自变量为x时),笼统地说某个函数是有界函数或无界函数是不确切的,必须指明所考虑的区间。

例如,函数 

向左转|向右转

 在 

向左转|向右转

 内是有界的,因为对任意

向左转|向右转

 ,存在M=1,使得 

向左转|向右转

 恒成立。


函数

向左转|向右转

 在开区间 

向左转|向右转

 上是无界的。


函数 

向左转|向右转

 在开区间(0,1)内是无界的,而函数 

向左转|向右转

 在区间[1,2]内是有界的。


函数 

向左转|向右转

 是有界函数,因为在其定义域 

向左转|向右转

 内恒有 

向左转|向右转

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
O客
推荐于2017-12-16 · TA获得超过3.3万个赞
知道大有可为答主
回答量:7652
采纳率:88%
帮助的人:3585万
展开全部
值域是有限区间的函数,是有界函数。值域是无限区间的函数是无界函数。
例如,正弦函数y=sinx,对任意x∈(-∞,+∞),|sinx|≤1恒成立,所以y=sinx是R上的有界函数。
有的函数在定义域的部分区间上可能是有界的.
例如,一次函数y=2x+1,定义域(-∞,+∞),值域(-∞,+∞).它在定义域(-∞,+∞)上是无界的. 但是它在区间(-1,2)上,值域(-1,5),它是有界的. 事实上,它在定义域的任意的真子集上都是有界的.
有的函数在定义域的部分区间上可能是无界的.
例如,反比例函数y=1/x,定义域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).它在定义域(-∞,0)∪(0,+∞)上是无界的.它在区间(0,1)内,值域(1,+∞),它是无界的. 当然,它在区间(1,+∞)内,值域(0,1),它是有界的.
追问
可是我看不懂这句话

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
夏至丶布衣85
2019-12-21 · TA获得超过3927个赞
知道大有可为答主
回答量:4703
采纳率:85%
帮助的人:3170万
展开全部
函数有界就说明函数所有的值是在一个区间范围内,这个区间两侧函数值都是常数,如果其中有一侧或者两侧为无穷大那这个函数就是无界的。
比如y=sinx就是有界函数,y=1/x就是无界函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式