三角形ABC三边abc,求证:a^2/(b+c-a)+b^2/(c+a-b)+c^2/(a+b-c)>=a+b+c

 我来答
玩车之有理8752
2022-08-27 · TA获得超过918个赞
知道小有建树答主
回答量:135
采纳率:100%
帮助的人:66.7万
展开全部
此题应仔细观察待证式左边的分母,可以发现(b+c-a)+(c+a-b)+(a+b-c)=a+b+c,故可利用均值不等式解决.
解:由题易知a>0,b>0,c>0.
由均值不等式a+b>=2√(ab)有
[a^2/(b+c-a)]+(b+c-a)>=2√(a^2)=2a
[b^2/(c+a-b)]+(c+a-b))>=2√(b^2)=2b
[c^2/(a+b-c)]+(a+b-c)>=2√(c^2)=2c
上述三式相加即得
a^2/(b+c-a)+b^2/(c+a-b)+c^2/(a+b-c)>=a+b+c
所以原不等式得证.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式