三角形ABC三边abc,求证:a^2/(b+c-a)+b^2/(c+a-b)+c^2/(a+b-c)>=a+b+c
1个回答
展开全部
此题应仔细观察待证式左边的分母,可以发现(b+c-a)+(c+a-b)+(a+b-c)=a+b+c,故可利用均值不等式解决.
解:由题易知a>0,b>0,c>0.
由均值不等式a+b>=2√(ab)有
[a^2/(b+c-a)]+(b+c-a)>=2√(a^2)=2a
[b^2/(c+a-b)]+(c+a-b))>=2√(b^2)=2b
[c^2/(a+b-c)]+(a+b-c)>=2√(c^2)=2c
上述三式相加即得
a^2/(b+c-a)+b^2/(c+a-b)+c^2/(a+b-c)>=a+b+c
所以原不等式得证.
解:由题易知a>0,b>0,c>0.
由均值不等式a+b>=2√(ab)有
[a^2/(b+c-a)]+(b+c-a)>=2√(a^2)=2a
[b^2/(c+a-b)]+(c+a-b))>=2√(b^2)=2b
[c^2/(a+b-c)]+(a+b-c)>=2√(c^2)=2c
上述三式相加即得
a^2/(b+c-a)+b^2/(c+a-b)+c^2/(a+b-c)>=a+b+c
所以原不等式得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询