∫(1/1+x)dx

∫(1/1+x)dx... ∫(1/1+x)dx 展开
 我来答
野人无事不言L
推荐于2017-09-29 · TA获得超过1414万个赞
知道顶级答主
回答量:2242万
采纳率:0%
帮助的人:145.5亿
展开全部
令x = tan z,dx = sec² z dz ∫ 1/(1 + x²) dx = ∫ 1/(1 + tan² z) * sec² z dz = ∫ 1/sec² z * sec² z dz = ∫ dz = z + C = arctan(x) + C,这是反三角正切函数 这积分是个基本公式,记下就好哟
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式