证明不等式,ln(1+x)≥x/x+1
3个回答
展开全部
证明:
构造函数f(x)=ln(1+x)-x
则 f '(x) = 1/(1+x) - 1 < 0 (∵x>0)
所以 f(x)在(0,+∞)上是减函数,于是 f(x) < f(0) = 0 即 ln(1+x) < x
构造函数g(x) = x/(1+x) - ln(1+x)
则 g ' (x) = 1/(1+x)^2 - 1/(1+x) = - x /(1+x)^2 < 0
所以 g(x)在(0,+∞)上是减函数,于是 g(x) < g(0) = 0 即 x/(1+x) < ln(1+x)
综上所述,结论成立
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;
②如果x>y,y>z;那么x>z;
③如果x>y,而z为任意实数或整式,那么x+z>y+z;
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;
⑤如果x>y,m>n,那么x+m>y+n;
⑥如果x>y>0,m>n>0,那么xm>yn;
⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询