高等数学,求极限

 我来答
同路追梦人
2016-09-15 · TA获得超过416个赞
知道小有建树答主
回答量:1160
采纳率:100%
帮助的人:85.8万
展开全部
利用极限:

lim(x->∞)(1+1/x)^x=e
设y={1+[(a-b)x+ab]/[x²+(b-a)x-ab]}^x
两边取对数:
lny=xln{1+[(a-b)x+ab]/[x²+(b-a)x-ab]}
=ln{1+[(a-b)x+ab]/[x²+(b-a)x-ab]}/(1/x)
(x->∞),0/0型,罗比达法则:
lny->1/{1+[(a-b)x+ab]/[x²+(b-a)x-ab]}×{(a-b)[x²+(b-a)x-ab]-[(a-b)x+ab](2x+b-a)}/[x²+(b-a)x-ab]²÷(-1/x²)
=-x²{(a-b)x²-(a-b)²x-ab(a-b)-[2(a-b)x²-(a-b)²x+2abx-ab(a-b)]}/{[x²+(b-a)x-ab]²{1+[(a-b)x+ab]/[x²+(b-a)x-ab]}}
=x²{(a-b)x²+2abx]}/{[x²+(b-a)x-ab]{[x²+(b-a)x-ab]+[(a-b)x+ab]}}
=[(a-b)x²+2abx]/[x²+(b-a)x-ab]
=[(a-b)+2ab/x]/[1+(b-a)/x-ab/x²]
->(a-b)/1=(a-b)
y->e^(a-b)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式