计算三重积分
1个回答
展开全部
V:x≥0,y≥0,z≥0,x+y+z≤1
∫∫∫v 1/(x+y+z+1)^3 dxdydz
=∫(0→1)dx∫(0→1-x)dy∫(0→1-x-y)1/(x+y+z+1)^3 dz
=∫(0→1)dx∫(0→1-x)[(-1/2)*1/(x+y+z+1)^2]|[0,1-x-y] dy
=∫(0→1)dx∫(0→1-x)(-1/2)*[1/2^2-1/(x+y+z+1)^2]dy
=(-1/2)∫(0→1)dx∫(0→1-x)[1/4-1/(x+y+z+1)^2]dy
=(-1/2)∫(0→1)[(1/4)y+1/(x+y+z+1)]|[0,1-x] dx
=(-1/2)∫(0→1)[(1/4)(1-x)+1/2-1/(x+1)]dx
=(-1/2)∫(0→1)[-1/(x+1)+3/4-(1/4)x]dx
=(-1/2)*[-ln(x+1)+(3/4)x-(1/8)x^2]|[0,1]
=(-1/2)*(-ln2+3/4-1/8)
=(1/2)ln2-5/16
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”
∫∫∫v 1/(x+y+z+1)^3 dxdydz
=∫(0→1)dx∫(0→1-x)dy∫(0→1-x-y)1/(x+y+z+1)^3 dz
=∫(0→1)dx∫(0→1-x)[(-1/2)*1/(x+y+z+1)^2]|[0,1-x-y] dy
=∫(0→1)dx∫(0→1-x)(-1/2)*[1/2^2-1/(x+y+z+1)^2]dy
=(-1/2)∫(0→1)dx∫(0→1-x)[1/4-1/(x+y+z+1)^2]dy
=(-1/2)∫(0→1)[(1/4)y+1/(x+y+z+1)]|[0,1-x] dx
=(-1/2)∫(0→1)[(1/4)(1-x)+1/2-1/(x+1)]dx
=(-1/2)∫(0→1)[-1/(x+1)+3/4-(1/4)x]dx
=(-1/2)*[-ln(x+1)+(3/4)x-(1/8)x^2]|[0,1]
=(-1/2)*(-ln2+3/4-1/8)
=(1/2)ln2-5/16
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询