矩阵行列式
1个回答
展开全部
矩阵行列式是指矩阵的全部元素构成的行列式,设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。
扩展资料
若A,B是数域P上的两个n阶矩阵,k是P中的`任一个数,则|AB|=|A||B|,|kA|=k|A|,|A*|=|A|n-1,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A-1|=|A|-1。
定理:
设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。
令A为n×n矩阵。
(i) 若A有一行或一列包含的元素全为零,则det(A)=0。
(ii) 若A有两行或两列相等,则det(A)=0。
这些结论容易利用余子式展开加以证明 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询