三角形外心向量结论

 我来答
金融导师君君TO
2022-10-25 · TA获得超过134个赞
知道答主
回答量:859
采纳率:100%
帮助的人:12.1万
展开全部

一、三角形的重心、垂心、内心、外心的定义

(1)重心--中线的交点:重心将中线长度分成2:1;

(2)垂心--高线的交点:高线与对应边垂直;

(3)内心--角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离等;

(4)外心-中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、三角形的四心与向量的结合的结论和性质

三角形重心的性质:

1.在AABC中,中线AD交BC于D,G是重心,则AG=2GD

2.在AABC中,A(zy;)B(x;y:) C(x),y;)

x=x+x+

重心G坐标公式

y上i+y2 +y3

3

3.若O是AABC的重心,则S_soc-S_c-SuOs--Suc

4.内角平分线定理::在AABC中,AD交A的平分线BC于D,

三角形四“心”向量形式的充要条件

设O为AABC所在平面上一点,角ABC所对边长分别为abc,(1)O为ABC的外心OA=OB-0C(2)0为ABC的重心OA+OB+0C=0.

(3)0为ABC的垂心OA-0B=OB0C=OCOA

(4)O为AABC的内心

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式