x 趋于1时 求(x ³-3x +2)/(x ∧4-4x +3)的极限
展开全部
lim( x³-3x +2)/(x^4-4x +3)=lim(x-1)²(x+2)/[(x-1)²(x²+2x+3)]=lim(x+2)/(x²+2x+3)
x→1
=3/6=1/2
因为:x³-3x+2=x³-1-3x+3=(x²+x+1)(x-1)-3(x-1)=(x-1)(x²+x-2)=(x-1)²(x+2)
x^4-4x+3=x^4-1-4x+4=(x-1)(x³+x²+x+1)-4(x-1)
=(x-1)(x³+x²+x-3)
=(x-1)(x³-1+x²-1+x-1)
=(x-1)²(x²+x+1+x+1+1)
=(x-1)²(xx²+2x+3)
x→1
=3/6=1/2
因为:x³-3x+2=x³-1-3x+3=(x²+x+1)(x-1)-3(x-1)=(x-1)(x²+x-2)=(x-1)²(x+2)
x^4-4x+3=x^4-1-4x+4=(x-1)(x³+x²+x+1)-4(x-1)
=(x-1)(x³+x²+x-3)
=(x-1)(x³-1+x²-1+x-1)
=(x-1)²(x²+x+1+x+1+1)
=(x-1)²(xx²+2x+3)
追问
这么晚还给我回答 真是灰常赶蟹😊
展开全部
解:
lim (x³-3x+2)/(x⁴-4x+3)
x→1
=lim (x³-2x²+x+2x²-4x+2)/(x⁴-2x³+x²+2x³-4x²+2x+3x²-6x+3)
x→1
=lim [x(x²-2x+1)+2(x²-2x+1)]/[x²(x²-2x+1)+2x(x²-2x+1)+3(x²-2x+1)]
x→1
=lim [(x+2)(x²-2x+1)]/[(x²+2x+3)(x²-2x+1)]
x→1
=lim [(x+2)(x-1)²]/[(x²+2x+3)(x-1)²]
x→1
=lim (x+2)/(x²+2x+3)
x→1
=(1+2)/(1²+2·1+3)
=3/6
=½
lim (x³-3x+2)/(x⁴-4x+3)
x→1
=lim (x³-2x²+x+2x²-4x+2)/(x⁴-2x³+x²+2x³-4x²+2x+3x²-6x+3)
x→1
=lim [x(x²-2x+1)+2(x²-2x+1)]/[x²(x²-2x+1)+2x(x²-2x+1)+3(x²-2x+1)]
x→1
=lim [(x+2)(x²-2x+1)]/[(x²+2x+3)(x²-2x+1)]
x→1
=lim [(x+2)(x-1)²]/[(x²+2x+3)(x-1)²]
x→1
=lim (x+2)/(x²+2x+3)
x→1
=(1+2)/(1²+2·1+3)
=3/6
=½
更多追问追答
追问
灰常蟹蟹😊
追答
嗯,被采纳的答案写得很凌乱。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询