求解题,谢谢!
展开全部
(1)
f(xy) = f(x)+f(y)
x=y=1
f(1)= f(1) +f(1)
f(1)=0
(2)
x>1, f(x)>0
x>y>0
x = (1+ε) y ; ε>0
f(x) -f(y)
=f((1+ε) y) -f(y)
=f(1+ε) +f(y) -f(y)
=f(1+ε)
>0
f(x) >f(y)
f(x) is increasing on (0, +∞)
(3)
(3)
f(1/3) =-1
-f(1/(x-2)) ≥ 2
f(1/(x-2)) ≤ -2
f(1/(x-2)) ≤ f(1/3) + f(1/3)
f(1/(x-2)) ≤ f(2/3)
=>
x-2>0 and 1/(x-2) ≤ 2/3
x>2 and [3 - 2(x-2)]/[3(x-2)]≤0
x>2 and (2x-7)/[3(x-2)]≥ 0
x>2 and (x≥ 7/2 or x<2 )
x≥ 7/2
f(xy) = f(x)+f(y)
x=y=1
f(1)= f(1) +f(1)
f(1)=0
(2)
x>1, f(x)>0
x>y>0
x = (1+ε) y ; ε>0
f(x) -f(y)
=f((1+ε) y) -f(y)
=f(1+ε) +f(y) -f(y)
=f(1+ε)
>0
f(x) >f(y)
f(x) is increasing on (0, +∞)
(3)
(3)
f(1/3) =-1
-f(1/(x-2)) ≥ 2
f(1/(x-2)) ≤ -2
f(1/(x-2)) ≤ f(1/3) + f(1/3)
f(1/(x-2)) ≤ f(2/3)
=>
x-2>0 and 1/(x-2) ≤ 2/3
x>2 and [3 - 2(x-2)]/[3(x-2)]≤0
x>2 and (2x-7)/[3(x-2)]≥ 0
x>2 and (x≥ 7/2 or x<2 )
x≥ 7/2
追答
f(xy) = f(x) +f(y)
1/3 = 1 x(1/3)
f(1/3) = f(1) +f(1/3) ≠f(1) -f(3)
这是错误
该是这样!
-f(1/(x-2)) ≥ 2
f(1/(x-2)) ≤ -2
= (-1) + (-1)
f(1/(x-2)) ≤ f(1/3) + f(1/3)
f(1/(x-2)) ≤ f(1/9) ( 初算是出错)
=>
x-2>0 and 1/(x-2) ≤ 1/9
x>2 and [9 - (x-2)]/[9(x-2)]≤0
x>2 and (x-11)/[3(x-2)]≥ 0
x>2 and (x≥ 11 or x<2 )
x≥ 11
来自:求助得到的回答
展开全部
(1)令x=y=1,得 f(1)=2f(1) 即 f(1)=0
(2) 设 x1、 x2∈(0,+∞),且 x2>x1 即 x2/x1>1和x2-x1>0
[f(x2)-f(x1)]/(x2-x1)=[f(x2/x1*x1)-f(x1)]/(x2-x1)
=[f(x2/x1)+f(x1)-f(x1)]/(x2-x1)
=f(x2/x1)/(x2-x1)>0
即f(x)在x x∈(0,+∞)上是单调增
(3)由 f(xy)=f(x)+f(y)
令 x=1/3 y=3
则 f(3)=f(1)-f(1/3)=1
2=f(3)+f(3)=f(9)
-f(1/(x-2)=f(x-2)-f(1)=f(x-2)
则 -f(1/(x02))≥2 转化为:f(x-2)≥f(9)
f(x)为单调增,得
x-2≥9..............(1)
1/(x-2)>0......(2)
解(1)(2),得 x≥11
(2) 设 x1、 x2∈(0,+∞),且 x2>x1 即 x2/x1>1和x2-x1>0
[f(x2)-f(x1)]/(x2-x1)=[f(x2/x1*x1)-f(x1)]/(x2-x1)
=[f(x2/x1)+f(x1)-f(x1)]/(x2-x1)
=f(x2/x1)/(x2-x1)>0
即f(x)在x x∈(0,+∞)上是单调增
(3)由 f(xy)=f(x)+f(y)
令 x=1/3 y=3
则 f(3)=f(1)-f(1/3)=1
2=f(3)+f(3)=f(9)
-f(1/(x-2)=f(x-2)-f(1)=f(x-2)
则 -f(1/(x02))≥2 转化为:f(x-2)≥f(9)
f(x)为单调增,得
x-2≥9..............(1)
1/(x-2)>0......(2)
解(1)(2),得 x≥11
追问
谢谢,懂了。因为有一朋友先答题了,已经采纳了,谢谢!
有问题再向你请教,再次感谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询