数模预测模型那些

 我来答
零洛aedea
高能答主

2022-10-19 · 答题姿势总跟别人不同
知道小有建树答主
回答量:1477
采纳率:0%
帮助的人:25.5万
展开全部

01、线性回归
线性回归比较经典的模型之一,英国科学家Francis Galton在19世纪就使用了 "回归 "一词,并且仍然是使用数据表示线性关系最有效的模型之一。线性回归是世界范围内,许多计量经济学课程的主要内容。学习该线性模型将让你在解决回归问题有方向,并了解如何用数学知识来预测现象。

02、逻辑回归
虽然名为回归,但逻辑回归是掌握分类问题的最佳模型。学习逻辑回归有以下几点优势:
初步了解分类和多分类问题,这是机器学习任务的重要部分
理解函数转换,如Sigmoid函数的转换
了解梯度下降的其他函数的用法,以及如何对函数进行优化。
03、决策树
首先要研究的非线性算法应该是决策树。决策树是一种基于if-else规则的,相对简单且可解释的算法,它将让你很好地掌握非线性算法及其优缺点。决策树是所有基于树模型的基础,通过学习决策树,你还将准备学习其他技术,如XGBoost或LightGBM。而且,决策树同时适用于回归和分类问题,两者之间的差异最小,选择影响结果的最佳变量的基本原理大致相同,你只是换了一个标准来做。

04、随机森林
由于决策树对超参数和简单假设的敏感性,决策树的结果相当有限。当你深入了解后,你会明白决策树很容易过度拟合,从而得出的模型对未来缺乏概括性。随机森林的概念非常简单。有助于在不同的决策树之间实现多样化,从而提高算法的稳健性。就像决策树一样,你可以配置大量的超参数,以增强这种集成模型的性能。

帐号已注销
2022-10-27 · TA获得超过967个赞
知道大有可为答主
回答量:4826
采纳率:100%
帮助的人:71.8万
展开全部

数模预测模型具体有:

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)

2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)

4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)

7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)

8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)

9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)

10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式