不定积分:∫ e^(-x)sin2xdx=

 我来答
大沈他次苹0B
2022-08-27 · TA获得超过7345个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部
令A=∫ e^(-x)sin2xdx
A=∫ e^(-x)sin2xdx = - ∫ sin2xd(e^(-x))=-e^(-x)sin2x+∫ e^(-x)d(sin2x)
=-e^(-x)sin2x+2∫ e^(-x)cos2xdx
=-e^(-x)sin2x-2∫ cos2xd(e^(-x))
=-e^(-x)sin2x-2cos2x*e^(-x)+2∫ e^(-x)d(cos2x)
=-e^(-x)sin2x-2cos2x*e^(-x)-4∫ e^(-x)sin2xdx
=-e^(-x)sin2x-2cos2x*e^(-x)-4A
5A=-e^(-x)sin2x-2cos2x*e^(-x)
A=1/5[-e^(-x)sin2x-2cos2x*e^(-x)]
=-1/5(sin2x+2cos2x)e^(-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式