可微与偏导数连续的关系

 我来答
濒危物种1718
2022-09-06 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6176
采纳率:100%
帮助的人:41.3万
展开全部
可微必定连续且偏导数存在。
连续未必偏导数存在,偏导数存在也未必连续。
连续未必可微,偏导数存在也未必可微。
偏导数连续是可微的充分不必要条件。

扩展资料

  设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A为不依赖Δx的常数,ο(Δx)是比Δx高阶的'无穷小。则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

  可微条件

  必要条件:

  若函数在某点可微分,则函数在该点必连续;

  若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

  充分条件:

  若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式